Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1. Пределы.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
246.27 Кб
Скачать

1. Множество и функция.

Понятия множества и функции относятся к первичным понятиям математики как понятия точки или линии.

Множество — это совокупность конечного или бесконечного числа элементов, объединенных по какому-либо признаку. Множество называется числовым, если элементами множества являются числа. Некоторые числовые множества и их обозначения:

N - множество всех натуральных чисел {0, 1, 2, 3, ……};

Z - множество всех целых чисел { -5, -4, -3,-2, -1, 0, 1, 2……};

Q – множество всех рациональных чисел{ m/n };

I – множество всех иррациональных чисел;

R - множество всех действительных чисел.

Отношение между двумя множествами называется отображением, если каждому элементу одного множества соответствует только один элемент другого.

Числовой функцией называется отображение f числового множества X на множество R действительных чисел. Множество f называется областью определения функции f, а множество значений X — область допустимых значений функции f.

D(f) - область определения функции ( множество Х )

E(f) - множество значений функции ( множество f )

Более простое определение функции: функцией называется такая связь между величинами x u y, при которой каждому вполне определенному значению независимой переменной x соответствует одно вполне определенное значение зависимой переменной y.

x – аргумент

y – функция

- аналитическая запись для функции одной переменной.

2. Элементарные функции и их графики.

Основными элементарными функциями считаются: степенная функция, показательная функция, логарифмическая функция, тригонометрические функции и обратные тригонометрические функции, а также многочлен и рациональная функция, которая представляет собой отношение двух многочленов.

К элементарным функциям относятся и те функции, которые получаются из элементарных путем применения основных четырех арифметических действий и образования сложной функции.

Графики элементарных функций

Прямая линия - график линейной функции y = ax + b. Функция y монотонно возрастает при a > 0 и убывает при a < 0. При b = 0 прямая линия проходит через начало координат т. 0 (y = ax - прямая пропорциональность)

Парабола - график функции квадратного трёхчлена у = ах2 + bх + с. Имеет вертикальную ось симметрии. Если а > 0, имеет минимум, если а < 0 - максимум. Точки пересечения (если они есть) с осью абсцисс - корни соответствующего квадратного уравнения ax2 + bx +с =0

Гипербола - график функции . При а > О расположена в I и III четвертях, при а < 0 - во II и IV. Асимптоты - оси координат. Ось симметрии - прямая у = х(а > 0) или у - - х(а < 0).

Показательная функция. Экспонента (показательная функция по основанию е) у = еx. (Другое написание у = ехр(х)). Асимптота - ось абсцисс.

Логарифмическая функция y = logax (a > 0)

у = sinx. Синусоида - периодическая функция с периодом Т = 2π