
- •Введение
- •Кинематика поступательного движения Введение
- •Кинематика поступательного движения. Основные кинематические характеристики
- •Скорость
- •Ускорение
- •Равнопеременное прямолинейное движение
- •Динамика поступательного движения Основные законы динамики
- •Первый закон Ньютона
- •Второй закон Ньютона
- •Третий закон Ньютона
- •Закон изменения импульса
- •Закон сохранения импульса
- •Реактивное движение
- •Разновидности сил, играющих важную роль в механических процессах Классификация фундаментальных взаимодействий, известных современной физике
- •Сила трения
- •Закон Гука
- •Сила тяготения
- •Центростремительная сила
- •Работа и энергия
- •Работа нескольких сил, приложенных к телу
- •Мощность
- •Энергия
- •Вращательное движение твердого тела
- •Момент инерции тела
- •Теорема Штейнера
- •Момент силы
- •Кинематические характеристики вращательного движения твердого тела
- •Основной закон динамики вращательного движения (аналог второго закона Ньютона)
- •Кинетическая энергия вращающегося тела
- •Момент импульса
- •Поступательным и вращательным движением
- •Закон изменения и сохранения момента импульса
- •Сумма моментов импульсов тел, составляющих замкнутую систему, есть величина постоянная.
- •Практические приложения закона сохранения момента импульса
- •Гармонические колебания
- •Уравнение гармонического колебания
- •Кинематические характеристики гармонического колебательного движения
- •Сложение гармонических колебаний
- •3. Сложение двух взаимно перпендикулярных гармонических колебаний
- •4. Частные случаи
- •Стоячие волны
- •Постулаты специальной теории относительности
- •Постулаты Эйнштейна
- •1. Принцип относительности.
- •Преобразования Лоренца
- •Следствия из преобразований Лоренца
- •Основной закон релятивистской динамики для материальной точки
- •Закон взаимосвязи массы и анергии
- •Молекулярная физика. Основные положения молекулярно-кинетической теории строения вещества
- •Вывод основного уравнения молекулярно кинетической теории идеального газа (уравнения Клаузиуса)
- •Уравнение Больцмана
- •Связь между давлением и температурой газа
- •Распределение молекул по скоростям и энергиям. Барометрическая формула
- •Число степеней свободы
- •Внутренняя энергия идеального газа
- •Первое начало термодинамики. Работа газа. Теплоемкость Основные понятия
- •Работа газа
- •Первое начало термодинамики
- •Теплоемкость газа
- •Адиабатический процесс
- •Второе начало термодинамики
- •Теорема Карно
- •Энтропия по Клаузиусу
- •Энтропия по Больцману
- •Явления переноса
- •Реальные газы Агрегатные состояния
- •Фазовые переходы
- •Эффект Джоуля-Томсона
- •Изотермы Ван-дер-Ваальса
- •Эффект Джоуля-Томсона для газа Ван-дер-Ваальса
- •Свойства жидкостей Поверхностное натяжение
- •Капиллярные явления
- •Свойства твердых тел Строение кристаллов
- •Кристаллизация, плавление и типы решеток
- •Тепловое расширение
- •Теплоемкость твердых тел
- •Основы гидродинамики Течение жидкости. Неразрывность струи
- •Уравнение Бернулли
- •Электростатика Электрические заряды. Закон Кулона
- •Закон сохранения электрического заряда
- •Закон Кулона
- •Напряженность электрического поля
- •Принцип суперпозиции полей
- •Силовые линии
- •Теорема Гаусса-Остроградского. Вычисление полей Поток вектора напряженности электрического поля
- •Теорема Гаусса-Остроградского
- •Напряженность поля равномерно заряженной бесконечной плоскости
- •Напряженность электрического поля между разноименно заряженными пластинами
- •Напряженность электрического поля равномерно заряженной тонкой нити бесконечной длины
- •Напряженность электрического поля равномерно заряженной сферы
- •Потенциал электрического поля. Потенциальная энергия взаимодействия зарядов
- •Работа точечного заряда по перемещению пробного заряда
- •Потенциальная энергия взаимодействия системы зарядов
- •Электрический потенциал
- •Связь между электрическим потенциалом и напряженностью электрического поля
- •Эквипотенциальные поверхности
- •Проводники в электрическом поле
- •1. Свойства проводников
- •2. Электрическая емкость
- •3. Энергия электростатического поля
- •Диэлектрики в электрическом поле
- •Постоянный электрический ток
- •1. Сила и плотность тока
- •2. Закон Ома
- •Электрические цепи
- •Закон Ома для полной цепи:
- •Контактные явления Работа выхода
- •Законы Вольта
- •Контактная разность потенциалов
- •Термоэлектрические явления
- •Электрический ток в полупроводниках
- •Собственная проводимость полупроводников
- •Примесная проводимость полупроводников
- •Контакт р- и п-полупроводников. Полупроводниковый диод
- •Магнитное поле токов
- •1. Магнитное поле и его характеристики
- •2. Закон Био-Савара-Лапласа
- •Напряженность поля в центре кругового витка
- •Напряженность поля прямолинейного проводника с током
- •Напряженность поля соленоида и тороида
- •Действие магнитного поля на проводник с током и движущийся заряд Закон Ампера
- •Сила Лоренца
- •Движение заряженной частицы в магнитном поле
- •Работа по перемещению
- •Магнитные свойства вещества
- •1. Парамагнетизм и диамагнетизм
- •Ферромагнетизм
- •Закон электромагнитной индукции Фарадея Энергия магнитного поля
- •Закон электромагнитной индукции Фарадея
- •Колебательный контур. Излучение электромагнитных волн
- •Уравнения Максвелла. Электромагнитные волны
- •Свет и его свойства. Геометрическая оптика Свойства света
- •Геометрическая оптика
- •Дисперсия света
- •Типы спектров
- •Основные фотометрические характеристики
- •Интерференция света Условия возникновения и сущность явления интерференции
- •Условия максимумов и минимумов интерференционной картины
- •Применение интерференции света.
- •Дифракция света Принцип Гюйгенса-Френеля. Зоны Френеля
- •Дифракция Френеля
- •Дифракция Фраунгофера
- •Поляризация света Естественный и поляризованный свет
- •Поляризация при двойном лучепреломлении
- •Вращение плоскости поляризации
- •Законы теплового излучения
- •Свойства теплового излучения
- •Характеристики теплового излучения
- •Поглощательные характеристики тела
- •Понятие абсолютно черного тела
- •Законы излучения абсолютно черного тела
- •Формула Планка
- •Квантовые свойства электромагнитного излучения. Внешний фотоэффект
- •Масса и энергия фотона Световое давление
- •Эффект Комптона
- •Строение атома водорода по Бору
- •Первый постулат Бора.
- •Второй постулат Бора.
- •Элементы квантовой механики. Частица в одномерной потенциальной яме Корпускулярно-волновой дуализм
- •Общее нерелятивистское уравнение Шредингера
- •Стационарное уравнение Шредингера
- •Строение ядра атома. Виды радиоактивного распада
- •Закон радиоактивного распада
- •Цепная реакция. Устройство и принцип действия ядерного реактора
- •Биологическое действие радиоактивных излучений Элементы дозиметрии радиоактивных излучений
- •Источники радиоактивных излучений
- •Действие облучения на органы и ткани
- •Механизм биологического действия радиации
- •Практическое использование ионизирующих излучений
- •Современные представления о строении элементарных частиц. Лептоны, кварки, глюоны. Кварки
- •Лептоны
- •Физический вакуум
- •Виртуальные частицы
- •Строение и эволюция Вселенной
- •Закон эволюции. Критическая плотность
Лептоны
Вторая группа известных сегодня элементарных частиц получила название лептонов. Перечислим известные в данное время лептоны — это: е_ — электрон, ve — электронное нейтрино, μ- — мюон, vμ — мюоняое нейтрино, τ_ — лептон или таон, vr — таонное нейтрино. Название лептон означает "легкая частица" и производится от соответствующего греческого слова. Электрические заряды лептонов и антилептонов равны ±е или 0. Лептоны не участвуют в сильном взаимодействии. Исторически термин лептон связан с тем, что известные до 1975 года лептоны имели массы, меньшие всех других элементарных частиц, (кроме фотона). Именно в 1975 г. был открыт тяжелый г-лептон, имеющий массу 3487те, т.е. почти в 2 раза большую, чем у протона.
Элементарным частицам, относящимся к группе лептонов, приписывают лептонный заряд L. Считается, что для лептонов L = +1, а для антилептонов (е+, μ+, τс, ve, vμ, vτ) L = 0. Имеет место закон сохранения лептонного заряда.
Эксперименты по рассеянию элементарных частиц на электроне показывают, что рассеяние происходит таким образом, как будто радиус электрона равен нулю. Другими словами электрон рассматривается как точеная бесструктурная частица.
Глюоны являются переносчиками взаимодействия между кварками так же, как фотоны переносят электромагнитное взаимодействие. Фотон с современной точки зрения также является истинно элементарной частицей, тождественно совпадающей со своей античастицей.
Итак, пер числим те группы частиц, которые современная физика считает элементарными. Это фотон, кварки, глюоны и лептоны.
Физика, микромира продолжает развиваться, поэтому не исключено, что скоро будут открыты новые типы неизвестных ранее частил или частиц, которые сегодня рассматриваются как гипотетические.
Физический вакуум
Английский физик Поль Дирак составил уравнение, которое описывало движение электронов с учетом законов как квантовой механики, так и теории относительности, и получил неожиданный результат. Формула для энергии электрона давала два решения: одно соответствовало обычному электрону, другое — частице, у которой энергия была отрицательной. В квантовой теории поля состояние частицы с отрицательной энергией интерпретируется как состояние античастицы, обладающей положительной энергией и положительным зарядом.
Дирак высказал предположение, что физический вакуум заполнен электронами с отрицательной энергией без предела для величины отрицательной энергии и поэтому нет ничего похожего на дно в этом электронном океане. Поэтому вакуум нередко называют "морем Дирака". Мы не наблюдаем электронов с отрицательной энергией именно потому, что они образуют сплошной невидимый фон, на котором происходят все мировые события.
Чтобы лучше понять это, рассмотрим такую аналогию. Человеческий глаз видит только то, что движется относительно него. Очертания неподвижных предметов мы различаем только потому, что человеческий зрачок сам постоянно движется. А многие животные, например, лягушка, не обладающие таким аппаратом зрения, способны, не двигаясь, видеть только движущиеся предметы.
Все мы, живущие в "море Дирака", оказываемся по отношению к нему в положении лягушки, застывшей на берегу пруда в ожидании неосторожного насекомого. Летящее насекомое она видит и не шелохнувшись, а пруд в безветренную погоду без бегущей по воде ряби для нее невидим. Так и для нас: фоновые электроны мы не видим, а в роли насекомого выступают редкие по сравнению с фоновыми электронами частицы с положительной энергией.
Когда же в "море Дирака" попадает богатый энергией световой квант-фотон, то он может выбить из него один из электронов с отрицательной энергией. При этом родятся две частицы, которые можно обнаружить экспериментально: электрон с положительной энергией и антиэлектрон (позитрон) тоже с положительной энергией, но еще и с положительным зарядом. В 1932 году американский физик К.Д.Андерсон экспериментально обнаружил позитрон в космических лучах.