
- •Введение
- •Кинематика поступательного движения Введение
- •Кинематика поступательного движения. Основные кинематические характеристики
- •Скорость
- •Ускорение
- •Равнопеременное прямолинейное движение
- •Динамика поступательного движения Основные законы динамики
- •Первый закон Ньютона
- •Второй закон Ньютона
- •Третий закон Ньютона
- •Закон изменения импульса
- •Закон сохранения импульса
- •Реактивное движение
- •Разновидности сил, играющих важную роль в механических процессах Классификация фундаментальных взаимодействий, известных современной физике
- •Сила трения
- •Закон Гука
- •Сила тяготения
- •Центростремительная сила
- •Работа и энергия
- •Работа нескольких сил, приложенных к телу
- •Мощность
- •Энергия
- •Вращательное движение твердого тела
- •Момент инерции тела
- •Теорема Штейнера
- •Момент силы
- •Кинематические характеристики вращательного движения твердого тела
- •Основной закон динамики вращательного движения (аналог второго закона Ньютона)
- •Кинетическая энергия вращающегося тела
- •Момент импульса
- •Поступательным и вращательным движением
- •Закон изменения и сохранения момента импульса
- •Сумма моментов импульсов тел, составляющих замкнутую систему, есть величина постоянная.
- •Практические приложения закона сохранения момента импульса
- •Гармонические колебания
- •Уравнение гармонического колебания
- •Кинематические характеристики гармонического колебательного движения
- •Сложение гармонических колебаний
- •3. Сложение двух взаимно перпендикулярных гармонических колебаний
- •4. Частные случаи
- •Стоячие волны
- •Постулаты специальной теории относительности
- •Постулаты Эйнштейна
- •1. Принцип относительности.
- •Преобразования Лоренца
- •Следствия из преобразований Лоренца
- •Основной закон релятивистской динамики для материальной точки
- •Закон взаимосвязи массы и анергии
- •Молекулярная физика. Основные положения молекулярно-кинетической теории строения вещества
- •Вывод основного уравнения молекулярно кинетической теории идеального газа (уравнения Клаузиуса)
- •Уравнение Больцмана
- •Связь между давлением и температурой газа
- •Распределение молекул по скоростям и энергиям. Барометрическая формула
- •Число степеней свободы
- •Внутренняя энергия идеального газа
- •Первое начало термодинамики. Работа газа. Теплоемкость Основные понятия
- •Работа газа
- •Первое начало термодинамики
- •Теплоемкость газа
- •Адиабатический процесс
- •Второе начало термодинамики
- •Теорема Карно
- •Энтропия по Клаузиусу
- •Энтропия по Больцману
- •Явления переноса
- •Реальные газы Агрегатные состояния
- •Фазовые переходы
- •Эффект Джоуля-Томсона
- •Изотермы Ван-дер-Ваальса
- •Эффект Джоуля-Томсона для газа Ван-дер-Ваальса
- •Свойства жидкостей Поверхностное натяжение
- •Капиллярные явления
- •Свойства твердых тел Строение кристаллов
- •Кристаллизация, плавление и типы решеток
- •Тепловое расширение
- •Теплоемкость твердых тел
- •Основы гидродинамики Течение жидкости. Неразрывность струи
- •Уравнение Бернулли
- •Электростатика Электрические заряды. Закон Кулона
- •Закон сохранения электрического заряда
- •Закон Кулона
- •Напряженность электрического поля
- •Принцип суперпозиции полей
- •Силовые линии
- •Теорема Гаусса-Остроградского. Вычисление полей Поток вектора напряженности электрического поля
- •Теорема Гаусса-Остроградского
- •Напряженность поля равномерно заряженной бесконечной плоскости
- •Напряженность электрического поля между разноименно заряженными пластинами
- •Напряженность электрического поля равномерно заряженной тонкой нити бесконечной длины
- •Напряженность электрического поля равномерно заряженной сферы
- •Потенциал электрического поля. Потенциальная энергия взаимодействия зарядов
- •Работа точечного заряда по перемещению пробного заряда
- •Потенциальная энергия взаимодействия системы зарядов
- •Электрический потенциал
- •Связь между электрическим потенциалом и напряженностью электрического поля
- •Эквипотенциальные поверхности
- •Проводники в электрическом поле
- •1. Свойства проводников
- •2. Электрическая емкость
- •3. Энергия электростатического поля
- •Диэлектрики в электрическом поле
- •Постоянный электрический ток
- •1. Сила и плотность тока
- •2. Закон Ома
- •Электрические цепи
- •Закон Ома для полной цепи:
- •Контактные явления Работа выхода
- •Законы Вольта
- •Контактная разность потенциалов
- •Термоэлектрические явления
- •Электрический ток в полупроводниках
- •Собственная проводимость полупроводников
- •Примесная проводимость полупроводников
- •Контакт р- и п-полупроводников. Полупроводниковый диод
- •Магнитное поле токов
- •1. Магнитное поле и его характеристики
- •2. Закон Био-Савара-Лапласа
- •Напряженность поля в центре кругового витка
- •Напряженность поля прямолинейного проводника с током
- •Напряженность поля соленоида и тороида
- •Действие магнитного поля на проводник с током и движущийся заряд Закон Ампера
- •Сила Лоренца
- •Движение заряженной частицы в магнитном поле
- •Работа по перемещению
- •Магнитные свойства вещества
- •1. Парамагнетизм и диамагнетизм
- •Ферромагнетизм
- •Закон электромагнитной индукции Фарадея Энергия магнитного поля
- •Закон электромагнитной индукции Фарадея
- •Колебательный контур. Излучение электромагнитных волн
- •Уравнения Максвелла. Электромагнитные волны
- •Свет и его свойства. Геометрическая оптика Свойства света
- •Геометрическая оптика
- •Дисперсия света
- •Типы спектров
- •Основные фотометрические характеристики
- •Интерференция света Условия возникновения и сущность явления интерференции
- •Условия максимумов и минимумов интерференционной картины
- •Применение интерференции света.
- •Дифракция света Принцип Гюйгенса-Френеля. Зоны Френеля
- •Дифракция Френеля
- •Дифракция Фраунгофера
- •Поляризация света Естественный и поляризованный свет
- •Поляризация при двойном лучепреломлении
- •Вращение плоскости поляризации
- •Законы теплового излучения
- •Свойства теплового излучения
- •Характеристики теплового излучения
- •Поглощательные характеристики тела
- •Понятие абсолютно черного тела
- •Законы излучения абсолютно черного тела
- •Формула Планка
- •Квантовые свойства электромагнитного излучения. Внешний фотоэффект
- •Масса и энергия фотона Световое давление
- •Эффект Комптона
- •Строение атома водорода по Бору
- •Первый постулат Бора.
- •Второй постулат Бора.
- •Элементы квантовой механики. Частица в одномерной потенциальной яме Корпускулярно-волновой дуализм
- •Общее нерелятивистское уравнение Шредингера
- •Стационарное уравнение Шредингера
- •Строение ядра атома. Виды радиоактивного распада
- •Закон радиоактивного распада
- •Цепная реакция. Устройство и принцип действия ядерного реактора
- •Биологическое действие радиоактивных излучений Элементы дозиметрии радиоактивных излучений
- •Источники радиоактивных излучений
- •Действие облучения на органы и ткани
- •Механизм биологического действия радиации
- •Практическое использование ионизирующих излучений
- •Современные представления о строении элементарных частиц. Лептоны, кварки, глюоны. Кварки
- •Лептоны
- •Физический вакуум
- •Виртуальные частицы
- •Строение и эволюция Вселенной
- •Закон эволюции. Критическая плотность
Условия максимумов и минимумов интерференционной картины
Для вывода условий наблюдения максимального (Imax) и минимального (Imin) значения интенсивности при наложении волн от двух когерентных источников, рассмотрим рис. 1. Если считать, что фаза колебаний в источниках S1 и S2 равна ωt, то в точке Р первая волна возбудит колебание А1 cos[ω(t – y1/v1)], вторая волна — колебание A2 cos[ω(t – y2/v2)], где v1 = c/n1 и v2 = c/n2 — фазовые скорости распространения первой и второй волны. Разность фаз колебаний в точке Р равна
где λо — длина волны в вакууме.
Введем понятие оптическая длина пути l = пу, которая равна произведению геометрической длины у пути световой волны на показатель п преломления этой среды. Величина ∆l = l2 — l1 — разность оптических длин путей — называется оптической разностью хода ∆l. Тогда
т.е. колебания, возбуждаемые в точке р, происходят в одинаковой фазе и оптическая разность хода
Таким образом, условие интерференционного максимума заключается в том, что оптическая разность хода должна составлять целое число длин волн в вакууме.
Если разность фаз колебаний
то колебания, возбуждаемые обеими волнами, происходят в противофазе и наблюдается интерференционный минимум. Условие интерференционного минимума состоит в том, что оптическая длина пути равна нечетному числу полуволн:
Наблюдение интерференции света
1. Опыт Юнга. Выясним, как выглядит интерференционная картина, создаваемая на экране двумя когерентными источниками монохроматического света S1 и S2. Расстояние от источников до экрана Э (рис .2) равно L, а расстояние между источниками — d, причем L » d.
Интенсивность в любой точке экрана Р определяется оптической разностью хода ∆l = |PS2| - |PS1|. Из рис.2 находим
откуда |РS2|2 - |PS1|2 = 2xd. Учитывая, что |РS2|2 - |PS1|2 ≈ 2L, имеем
Из условий максимумов и минимумов интерференции (6) и (7) получим координаты максимумов
и минимумов интерференционной картины
Число m является номером интерференционного максимума (минимума). Расстояние между соседними максимумами (минимумами), называемое шириной интерференционной полосы, равно
Интерференционная картина представляет собой чередование светлых и темных полос, параллельных друг другу. Интерференция света в тонких пленках. Пусть имеется плоскопараллельная прозрачная пленка с показателем преломления n2. Монохроматическая волна из среды с показателем преломления n1 падает на эту пленку под углом а (рис. 3).
В результате преломления и отражения возникают лучи 1 и 2, которые являются когерентными и дадут интерференционную
картину, определяющуюся оптической разностью хода ∆l между этими лучами
где член — λ0/2 обусловлен потерей полуволны при отражении света в точке О от оптически более плотной среды (n > 1).
Согласно рис. 3, ОС - С В = d/cos τ, OA - ОB sin а -2dtgτsin a. Учитывая закон преломления света sin a = n sin τ, получим
В точке P будет наблюдаться максимум или минимум интенсивности, если оптическая разность хода (13) будет удовлетворять условию (6) или (8). Случай интерференции света в тонких пленках является примером возникновения полос равного наклона, так как каждому наклону (a = const) лучей соответствует своя интерференционная полоса.
3. Кольца Ньютона. Интерференционная картина наблюдается в данном случае при отражении света, падающего на плоскую поверхность линзы от верхней и нижней поверхностей воздушного зазора между линзой и плоскопараллельной пластинкой. Интерференционные полосы, возникающие вследствие интерференции от мест одинаковой толщины, называются полосами равной толщины.
В данном случае они имеют вид концентрических окружностей. В отраженном свете оптическая разность хода с учетом потери полуволны при отражении ∆l = 2d+ λ0/2, где d — ширина воздушного зазора. Из рис. 4 следует, что R2 = (R — d)2 + r2, где r — радиус окружности, всем точкам которой соответствует одинаковый зазор d. Так как R2 = R2 - 2Rd + d2 + r2 и d « R, получим r2 2Rd и
и радиуса m-го темного кольца