
- •Введение
- •Кинематика поступательного движения Введение
- •Кинематика поступательного движения. Основные кинематические характеристики
- •Скорость
- •Ускорение
- •Равнопеременное прямолинейное движение
- •Динамика поступательного движения Основные законы динамики
- •Первый закон Ньютона
- •Второй закон Ньютона
- •Третий закон Ньютона
- •Закон изменения импульса
- •Закон сохранения импульса
- •Реактивное движение
- •Разновидности сил, играющих важную роль в механических процессах Классификация фундаментальных взаимодействий, известных современной физике
- •Сила трения
- •Закон Гука
- •Сила тяготения
- •Центростремительная сила
- •Работа и энергия
- •Работа нескольких сил, приложенных к телу
- •Мощность
- •Энергия
- •Вращательное движение твердого тела
- •Момент инерции тела
- •Теорема Штейнера
- •Момент силы
- •Кинематические характеристики вращательного движения твердого тела
- •Основной закон динамики вращательного движения (аналог второго закона Ньютона)
- •Кинетическая энергия вращающегося тела
- •Момент импульса
- •Поступательным и вращательным движением
- •Закон изменения и сохранения момента импульса
- •Сумма моментов импульсов тел, составляющих замкнутую систему, есть величина постоянная.
- •Практические приложения закона сохранения момента импульса
- •Гармонические колебания
- •Уравнение гармонического колебания
- •Кинематические характеристики гармонического колебательного движения
- •Сложение гармонических колебаний
- •3. Сложение двух взаимно перпендикулярных гармонических колебаний
- •4. Частные случаи
- •Стоячие волны
- •Постулаты специальной теории относительности
- •Постулаты Эйнштейна
- •1. Принцип относительности.
- •Преобразования Лоренца
- •Следствия из преобразований Лоренца
- •Основной закон релятивистской динамики для материальной точки
- •Закон взаимосвязи массы и анергии
- •Молекулярная физика. Основные положения молекулярно-кинетической теории строения вещества
- •Вывод основного уравнения молекулярно кинетической теории идеального газа (уравнения Клаузиуса)
- •Уравнение Больцмана
- •Связь между давлением и температурой газа
- •Распределение молекул по скоростям и энергиям. Барометрическая формула
- •Число степеней свободы
- •Внутренняя энергия идеального газа
- •Первое начало термодинамики. Работа газа. Теплоемкость Основные понятия
- •Работа газа
- •Первое начало термодинамики
- •Теплоемкость газа
- •Адиабатический процесс
- •Второе начало термодинамики
- •Теорема Карно
- •Энтропия по Клаузиусу
- •Энтропия по Больцману
- •Явления переноса
- •Реальные газы Агрегатные состояния
- •Фазовые переходы
- •Эффект Джоуля-Томсона
- •Изотермы Ван-дер-Ваальса
- •Эффект Джоуля-Томсона для газа Ван-дер-Ваальса
- •Свойства жидкостей Поверхностное натяжение
- •Капиллярные явления
- •Свойства твердых тел Строение кристаллов
- •Кристаллизация, плавление и типы решеток
- •Тепловое расширение
- •Теплоемкость твердых тел
- •Основы гидродинамики Течение жидкости. Неразрывность струи
- •Уравнение Бернулли
- •Электростатика Электрические заряды. Закон Кулона
- •Закон сохранения электрического заряда
- •Закон Кулона
- •Напряженность электрического поля
- •Принцип суперпозиции полей
- •Силовые линии
- •Теорема Гаусса-Остроградского. Вычисление полей Поток вектора напряженности электрического поля
- •Теорема Гаусса-Остроградского
- •Напряженность поля равномерно заряженной бесконечной плоскости
- •Напряженность электрического поля между разноименно заряженными пластинами
- •Напряженность электрического поля равномерно заряженной тонкой нити бесконечной длины
- •Напряженность электрического поля равномерно заряженной сферы
- •Потенциал электрического поля. Потенциальная энергия взаимодействия зарядов
- •Работа точечного заряда по перемещению пробного заряда
- •Потенциальная энергия взаимодействия системы зарядов
- •Электрический потенциал
- •Связь между электрическим потенциалом и напряженностью электрического поля
- •Эквипотенциальные поверхности
- •Проводники в электрическом поле
- •1. Свойства проводников
- •2. Электрическая емкость
- •3. Энергия электростатического поля
- •Диэлектрики в электрическом поле
- •Постоянный электрический ток
- •1. Сила и плотность тока
- •2. Закон Ома
- •Электрические цепи
- •Закон Ома для полной цепи:
- •Контактные явления Работа выхода
- •Законы Вольта
- •Контактная разность потенциалов
- •Термоэлектрические явления
- •Электрический ток в полупроводниках
- •Собственная проводимость полупроводников
- •Примесная проводимость полупроводников
- •Контакт р- и п-полупроводников. Полупроводниковый диод
- •Магнитное поле токов
- •1. Магнитное поле и его характеристики
- •2. Закон Био-Савара-Лапласа
- •Напряженность поля в центре кругового витка
- •Напряженность поля прямолинейного проводника с током
- •Напряженность поля соленоида и тороида
- •Действие магнитного поля на проводник с током и движущийся заряд Закон Ампера
- •Сила Лоренца
- •Движение заряженной частицы в магнитном поле
- •Работа по перемещению
- •Магнитные свойства вещества
- •1. Парамагнетизм и диамагнетизм
- •Ферромагнетизм
- •Закон электромагнитной индукции Фарадея Энергия магнитного поля
- •Закон электромагнитной индукции Фарадея
- •Колебательный контур. Излучение электромагнитных волн
- •Уравнения Максвелла. Электромагнитные волны
- •Свет и его свойства. Геометрическая оптика Свойства света
- •Геометрическая оптика
- •Дисперсия света
- •Типы спектров
- •Основные фотометрические характеристики
- •Интерференция света Условия возникновения и сущность явления интерференции
- •Условия максимумов и минимумов интерференционной картины
- •Применение интерференции света.
- •Дифракция света Принцип Гюйгенса-Френеля. Зоны Френеля
- •Дифракция Френеля
- •Дифракция Фраунгофера
- •Поляризация света Естественный и поляризованный свет
- •Поляризация при двойном лучепреломлении
- •Вращение плоскости поляризации
- •Законы теплового излучения
- •Свойства теплового излучения
- •Характеристики теплового излучения
- •Поглощательные характеристики тела
- •Понятие абсолютно черного тела
- •Законы излучения абсолютно черного тела
- •Формула Планка
- •Квантовые свойства электромагнитного излучения. Внешний фотоэффект
- •Масса и энергия фотона Световое давление
- •Эффект Комптона
- •Строение атома водорода по Бору
- •Первый постулат Бора.
- •Второй постулат Бора.
- •Элементы квантовой механики. Частица в одномерной потенциальной яме Корпускулярно-волновой дуализм
- •Общее нерелятивистское уравнение Шредингера
- •Стационарное уравнение Шредингера
- •Строение ядра атома. Виды радиоактивного распада
- •Закон радиоактивного распада
- •Цепная реакция. Устройство и принцип действия ядерного реактора
- •Биологическое действие радиоактивных излучений Элементы дозиметрии радиоактивных излучений
- •Источники радиоактивных излучений
- •Действие облучения на органы и ткани
- •Механизм биологического действия радиации
- •Практическое использование ионизирующих излучений
- •Современные представления о строении элементарных частиц. Лептоны, кварки, глюоны. Кварки
- •Лептоны
- •Физический вакуум
- •Виртуальные частицы
- •Строение и эволюция Вселенной
- •Закон эволюции. Критическая плотность
Потенциал электрического поля. Потенциальная энергия взаимодействия зарядов
Потенциальной называется энергия, связанная со взаимным расположением тел или частей тела относительно друг друга.
Потенциальная энергия может быть определена только для консервативной силы. Консервативная сила — это такая сила, работа которой над телом при его перемещении по любой замкнутой траектории, когда тело возвращается в исходное положение, равна нулю.
При рассмотрении электростатических полей, образованных неподвижными зарядами, потенциальная энергия их взаимодействия оказывается очень важной характеристикой. Энергетический подход при изучении электрических явлений позволяет не только обобщить закон сохранения энергии, а также служит средством более просто находить решения электростатических задач, чем путем рассмотрения сил и электрических полей.
Работа точечного заряда по перемещению пробного заряда
Если источником электрического поля является положительный неподвижный заряд q0, то электростатическая сила, действующая на пробный точечный заряд q, убывает пропорционально
квадрату расстояния между ними:
Пусть пробный заряд q перемещается из одного положения (точка 1) в другое (точка 2) по произвольному пути, причем его расстояние от заряда изменяется от r1 до r2 (рис. 1).
Работа, совершаемая силой Кулона:
где dl — вектор бесконечно малого перемещения. Она равна
Обратите внимание, что формула (1), дающая величину работы поля точечного заряда по перемещению пробного заряда, указывает на тот факт, что эта величина не зависит от выбранного пути, а только лишь от положения начальной и конечной точек траектории движения. Следовательно, сила Кулона — консервативная сила, что позволяет для электростатических полей использовать понятие потенциальной энергии.
Сила, действующая на данный заряд со стороны любого распределения зарядов, может быть записана в виде геометрической суммы кулоновских сил. Следовательно, и сила, создаваемая произвольным распределением зарядов — консервативная. Это позволяет ввести понятие потенциала электростатического поля.
Разность потенциальных энергий точечного заряда в двух различных точках электростатического поля можно определить как работу, совершаемую внешними силами по перемещению заряда q против действия электрической силы из одной точки в другую. Это определение будет равносильно определению изменения потенциальной энергии заряда в электростатическом поле как взятой с обратным знаком работы, совершаемой самим полем по перемещению заряда из одной точки в другую.
Следовательно, работу А сил поля из (1) можно представить как разность потенциальных энергий, которыми обладает точечный заряд q в точках 1 и 2 поля заряда q0:
где W1 и W2 — потенциальная энергия в точках 1 и 2 соответственно.
Сравнивая формулы (2) и (1), заключаем, что на любом расстоянии г от положительного точечного заряда q0 электрическую потенциальную энергию можно записать в виде:
где С — произвольная постоянная. Обычно выбирают С = 0, и тогда:
При таком выборе С имеем W = 0 при r = ∞.
Замечание о выборе знака W(r) в формуле (3). Принимается, что W(r) > 0, если действуют силы отталкивания; W(r) < О, если действуют силы притяжения. Выражение (3) симметрично относительно q и q0, так как это энергия взаимодействия.