
- •Раздел I Основные понятия и определения
- •1.1 Роль и значение автоматизации в машиностроении
- •1.2 Основные направления развития автоматизации
- •1.3 Принципы автоматизации
- •1.4 Ступени автоматизации
- •1.5 Технологичность конструкций изделий как направление автоматизации
- •1.6 Концентрация технологических процессов, как направление автоматизации
- •1.7 Выбор оптимального варианта концентрации операций
- •1.8 Методы выбора варианта концентрации
- •Раздел II Основы проектирования автоматических линий
- •2.1 Виды автоматических линий
- •2.1.1 Линии из агрегатных станков
- •2.1.2 Линии с жесткой и гибкой связью
- •2.1.3 Линии непрерывного действия
- •2.1.4 Спутниковые линии
- •Станок; 2- загрузочная позиция; 3- рабочий транспортер; 4- рабочая позиция; 5- холостая позиция;
- •2.2 Производительность линии
- •2.3 Надежность линий
- •2.3.1 Безотказность как характеристика надежности линий
- •2.3.2 Числовые показатели безотказности
- •2.3.3 Ремонтопригодность
- •2.3.4 Долговечность
- •2.3.5 Коэффициент готовности как обобщенный показатель готовности
- •2.3.6 Определение коэффициента готовности линий с различным видом связей
- •2.3.7 Выбор количества участков
- •Раздел III Автоматизация загрузки станков и автоматических линий
- •3.1 Основные понятия и определения
- •3.2 Дисковые бзу
- •3.3 Способы вторичной ориентации в бзу
- •Определение ширины лотка мн бзу
- •3.5 Вибрационные бзу
- •3.7 Бзу крючкового типа
- •3.8 Бзу с шиберным (ножевым) захватом
- •3.9 Трубчатые бзу
- •3.9.1 Методика расчета трубчатого бзу
- •3.10 Щелевые бзу
- •3.11 Определение центра тяжести заготовки
- •3.12 Автоматизация транспорта
- •3.13 Полусамотечный способ транспортирования деталей по линии.
- •3.14 Механические полусамотечные лотки
- •3.15 Пневматические полусамотечные лотки
- •3.16 Автоматизация принудительного транспортирования.
- •3.10 Автоматизация транспорта с непрерывным перемещением заготовок и спутников.
- •3.10.1 Роликоцепные конвейеры
- •3.10.2 Конвейеры с приводными роликами.
- •IV раздел Автоматизация контроля в машиностроении
- •4.1 Основные понятия и определения
- •4.2 Виды активного контроля
- •4.3 Методы измерений в уак
- •4.3.1 Устройство активного контроля с жесткими калибрами
- •4.4 Краткие сведения о преобразователях устройств активного контроля
- •4.4.1 Электромеханические преобразователи
- •4.4.2 Индуктивные преобразователи
- •4.4.3 Пневматические преобразователи Принцип действия
- •4.4.4 Пневматические преобразователи с простой схемой измерения
- •4.4.5 Пневматические преобразователи с дифференциальной схемой измерений
- •Раздел V Манипуляторы и промышленные роботы
- •Применение пр
2.1.3 Линии непрерывного действия
По принципу действия линии делят на две группы: линии циклического действия (ЛЦД) и непрерывного действия (ЛНД).
Отличительным признаком ЛЦД является периодичность перемещения объема производства по линии и цикличность работы линии, когда все элементы цикла (установка, подвод инструмента, обработка, снятие детали, транспортировка) выполняются последовательно, не перекрываясь во времени. Причем если не наступил второй элемент, то и третий не наступит. Для ЛЦД характерны потери времени на холостые ходы. Однако эти линии имеют большие технологические возможности, т.к. позволяют обрабатывать самые разнообразные детали и собирать разные агрегаты машин. Поэтому основной парк автоматических линий в машиностроении – это линии циклического действия.
ЛНД создаются на базе роторных линий. Их часто называют роторными линиями. Основу роторных линий составляют рабочие (технологические) роторы, которые связываются между собой транспортными роторами. Загрузка и разгрузка линии осуществляется с помощью одноименных роторов (рис. 2.6 б).
а)
б)
Рис.2.6 а - схема работы, б - кинематическая схема роторной линии
Рабочий ротор (рис. 2.6 б) представляет собой непрерывно вращающийся стол. По периферии стола устанавливаются объекты производства. Над столом в строгом соответствии с объектами производства располагаются инструментальные блоки. Инструментальные блоки вращаются синхронно со столом и в рабочей зоне под действием неподвижного копира получают технологические движения. В результате на рабочем роторе инструментальные блоки, следуя один за другим, последовательно выполняют одну и ту же операцию. При работе линий объект производства перемещается непрерывно, последовательно от одного технологического ротора к другому.
Производительность рабочего ротора определяется промежутком времени между двумя объектами производства, сходящими с ротора:
;
(2.1)
Т – время между выходом смежных изделий с ротора;
l- расстояние между смежными инструментальными блоками;
V – скорость перемещения инструментальных блоков;
–
угол между соседними инструментальными
блоками (рад).
Роторные линии
являются линиями с «жесткой» связью,
на которых объект производства непрерывно
перемещается от одного рабочего ротора
к другому с постоянной окружной скоростью.
Поскольку скорость перемещения объектов
производства постоянна и если произведение
на каждом роторе будет постоянным, то
на роторных линиях с «жесткой» связью
с непрерывным перемещением объектов
производства можно объединять операции
с различной продолжительностью. Тогда,
чем больше время операции, тем больше
габариты ротора и больше инструментальных
блоков на нем. Необходимая производительность
ротора обеспечивается увеличением
количества инструментальных блоков,
т.е. уменьшением угла .
Однако, основное достоинство роторных линий состоит в том, что они имеют высокую производительность. Она достигается за счет следующих факторов:
Инструментальные блоки совершают только простейшие возвратно-поступательные движения и поэтому могут выполнять только элементарные операции, станкоемкость которых мала;
На рабочих роторах можно устанавливать достаточно большое количество инструментальных блоков, которые работают с последовательной концентрацией элементарных операций;
Технологические операции выполняются с минимальными потерями времени на холостые хода, так как объект производства непрерывно перемещается по линии;
Жесткая связь между рабочими роторами обуславливает высокую степень концентрации элементарных операций на линии.
Вместе с тем роторные линии имеют два существенных недостатка:
Первый состоит в ограниченных технологических возможностях этих линий, что обусловлено возможностью выполнения только простейших операций.
Второй недостаток связан с габаритами ротора, а также с тем, что на каждом роторе выполняется только одна операция. При большом числе операций роторные линии получаются очень громоздкими и требуют больших производственных площадей.
Роторные линии нашли в основном применение в пищевой, оборонной, фармацевтической и электротехнической промышленности. Они применимы при производстве простых изделий без снятия стружки методами штамповки, выдавливания, пайки, дозирования материалов, для сборки и контроля, когда технологический процесс состоит из небольшого числа простых операций. В автомобильной промышленности эти линии применяются для нанесения защитных покрытий и проверки герметичности изделий.