- •С высокой плотностью дислокаций
- •Техническое Доэвтектоидная Эвтектоидная Заэвтектоидная
- •Легированные стали
- •Влияние легирующих элементов на свойства стали
- •Маркировка легированных сталей
- •Конструкционные машиностроительные стали
- •Цементуемые стали
- •Улучшаемые легированные стали
- •Высокопрочные материалы
- •Рессорно-пружинные стали
- •Износостойкие стали
- •32. Коррозионностойкие (нержавеющие) стали
- •Хромоникелевые коррозионностойкие стали
- •33. Жаропрочные стали
- •34. Инструментальные стали
- •Углеродистые инструментальные стали
- •Легированные инструментальные стали
- •Быстрорежущие стали (теплостойкие стали)
- •Тема 5. Цветные металлы и их сплавы
- •35. Алюминий и его сплавы
- •2.По способности упрочняться термической обработкой:
- •3.По свойствам:
- •37. Легирующие элементы в сплавах на основе алюминия
- •38. Деформируемые алюминиевые сплавы
- •39. Литейные сплавы на основе алюминия
- •40.Спеченные алюминиевые сплавы
- •41. Медь и ее сплавы
- •42. Сплавы на основе меди
- •1). По химическому составу:
- •3). По способу упрочнения:
- •43. Латуни
- •44. Бронзы
- •45. Титан и его сплавы
- •47. Магний и его сплавы
- •48.Тугоплавкие металлы и сплавы
- •Термическая обработка
- •1. Отжиг 1-рода
- •2. Отжиг 2-рода:
- •Закалка
- •Способы закалки.
- •Закаливаемость и прокаливаемость стали
- •П оверхностна закалка
- •Тема 8. Химико-термическая обработка
45. Титан и его сплавы
Титан серебристо-белый легкий металл с плотностью 4,5 г/см3. Температура плавления титана зависит от степени чистоты и находится в пределах 1660…1680oС. Имеет полиморфные превращения при 882°С. До 882°С существует Tiα с решеткой ГПУ, а выше 882°С - Tiβ с решеткой ОЦК.
Достоинствами титана являются:
небольшая плотность,
очень высокая удельная прочность (сплав ВТ15 имеет предел прочности σв = 1500 МПа и удельную прочность σв/γ ≥ 30 км),
высочайшая коррозионная стойкость (кроме концентрированных серной, азотной и плавиковой кислот),
высокая ударная вязкость даже при отрицательных температурах (KCU = 1-1,6 МДж/м2 при температуре жидкого водорода –253 °C),
способность сплавов упрочняться термической обработкой.
Недостатки титана, как конструкционного материала:
высокая стоимость (бедные руды, сложный металлургический передел),
активное взаимодействие с газами при высокой температуре,
низкое значение модуля упругости E (примерно в 2 раза меньше, чем у железа).
плохая обрабатываемость по сравнению со сталью.
Для производства титана используют рутил, ильменит, титанит и другие руды, содержащие 10— 40% двуокиси титана ТiО2. После обогащения концентрат титановых руд содержит до 65% ТiО2. В процессе плавки окислы железа и титана восстанавливаются, в результате чего получают чугун и титановый шлак, в котором содержится до 80—90% ТiО2. Титановый шлак хлорируют, в результате чего титан соединяется с хлором в четыреххлористый титан ТiСl4. Затем четыреххлористый титан нагревают в замкнутой реторте при температуре 950—1000°С в среде инертного газа (аргона) вместе с твердым магнием. Магний отнимает хлор, превращаясь в жидкий МgС1, а твердые частицы восстановленного титана спекаются в пористую массу, образуя титановую губку.
Путем сложных процессов рафинирования и переплава из титановой губки получают чистый титан. Технически чистый титан (ГОСТ 19807-74) содержит 99,2-99,65% титана.
Маркируется чистый титан буквами ВТ и цифрами, определяющими количество примесей:
ВТ1-00 - 99,53% Ti;
ВТ1-0 - 99,48% Ti;
ВТ -1 - 99,44% Ti.
Чистый титан хорошо обрабатывается давлением, хорошо сваривается дуговой сваркой в аргоне или гелии.
Примеси оказывают большое влияние на свойства. Вредные примеси (азот, углерод, кислород, водород) образуют с титаном твердые растворы внедрения и хрупкие оксиды, карбиды, нитриды, гидриды, которые снижают пластичность и свариваемость. Особенно опасен водород. Пластинчатые выделения гидрида титана TiH располагаются вдоль плоскостей скольжения и двойникования или по границам зерен, что резко охрупчивает титан. Для удаления водорода титан отжигают в вакууме. Содержание примесей в титане ограничено сотыми и, даже, тысячными долями процента содержания водорода < 0,012%.
Применение: лист, трубы, проволока, поковки, сварные изделия.
46. ТИТАНОВЫЕ СПЛАВЫ
Для получения сплавов титана с заданными механическими свойствами его легируют алюминием, молибденом, хромом и другими элементами.
Алюминий повышает жаропрочность и механическую прочность титана. Ванадий, марганец, молибден и хром повышают жаропрочность титановых сплавов. Сплавы хорошо поддаются горячей и холодной обработке давлением, обработке резанием, имеют удовлетворительные литейные свойства, хорошо свариваются в среде инертных газов. Сплавы удовлетворительно работают при температурах до 350—500°С.
По технологическому назначению титановые сплавы делят на деформируемые и литейные Деформируемые сплавы - полуфабрикаты или изделия из них изготавливаются методом обработки давлением - ковкой, прессованием, вытяжкой и т.д. Маркируются буквами ВТ и далее цифры, показывающие номер сплава (ВТ5). Литейные сплавы - изделия из них изготавливаются методом литья. Маркировка такая же, как и деформируемых сплавов (тот же состав), но добавляется буква Л (ВТ5Л).
Порошковые сплавы изготовлены методом порошковой металлургии из элементарных порошков (ЭП), предварительно легированных (ПЛ) порошков или методом быстрой кристаллизации (БК). Наиболее распространен способ легированных порошков.
По прочности титановые сплавы делят - на три группы:
низкой (σв = 300-700 МПа) под маркой ВТ1;
средней (σв = 700-1000 МПа - ВТЗ, ВТ4, ВТ5 и другие;
высокой (σв более 1000 МПа) - ВТ6, ВТ14, ВТ15 (после закалки и старения).
Для литья применяют сплавы, аналогичные по составу деформируемым сплавам (ВТ5Л, ВТ14Л), а также специальные литейные сплавы. Литейные сплавы имеют более низкие механические свойства, чем соответствующие деформируемые. Титан и его сплавы, обработанные давлением, выпускают в виде прутков, листов и слитков.
Области применения титановых сплавов:
авиация и ракетостроение (корпуса двигателей, баллоны для газов, сопла, диски, детали крепежа);
химическая промышленность (компрессоры, клапаны, вентили для агрессивных жидкостей);
оборудование для обработки ядерного топлива;
морское и речное судостроение (гребные винты, обшивка морских судов, подводных лодок);
криогенная техника (высокая ударная вязкость сохраняется до -253oС).
Титан и его сплавы
Титан сложно отнести к какой-то одной разновидности цветных металлов. Он является тугоплавким (tпл = 1669 °C), в то же время его можно считать легким (γ = 4,5 г/см3). Не будучи благородным металлом, он отлично сопротивляется коррозии в различных средах. Как и железо, титан испытывает полиморфное превращение: Tia c ГПУ решеткой при 882 °C превращается в Tib с ОЦК решеткой.
Титан широко распространен в земной коре: он занимает четвертое место после алюминия, железа и магния. Но промышленное применение этого уникального металла началось только в 1950-х годах, в основном, для военных целей. Это объясняется сложностью извлечения титана из руд, многоступенчатым процессом очистки, что ведет к весьма высоким ценам на металл (примерно в 90 раз дороже железа).
Достоинствами титана являются:
небольшая плотность,
очень высокая удельная прочность (сплав ВТ15 имеет предел прочности σв = 1500 МПа и удельную прочность σв/γ ≥ 30 км),
высочайшая коррозионная стойкость (кроме концентрированных серной, азотной и плавиковой кислот),
высокая ударная вязкость даже при отрицательных температурах (KCU = 1-1,6 МДж/м2 при температуре жидкого водорода –253 °C),
способность сплавов упрочняться термической обработкой.
Недостатки титана, как конструкционного материала:
высокая стоимость (бедные руды, сложный металлургический передел),
активное взаимодействие с газами при высокой температуре,
низкое значение модуля упругости E (примерно в 2 раза меньше, чем у железа).
плохая обрабатываемость по сравнению со сталью.
Тем не менее, технология получения изделий из титановых сплавов литьем, обработкой давлением и резанием, сварка титана непрерывно развиваются и совершенствуются.
Основные легирующие элементы в титановых сплавах: Al, V, Mo, Cr, Zr, Mn. Алюминий в титановых сплавах играет такую же важную роль, как углерод в стали. Легирующие элементы могут стабилизировать низкотемпературную α-фазу или высокотемпературную фазу β. Растворимость компонентов в титане с изменением температуры меняется, поэтому возможна упрочняющая термообработка (для разных сплавов это либо закалка и отпуск, либо закалка и старение).
При медленном охлаждении превращение Tiα → Tiβ идет за счет диффузии – путем зарождения центров новой фазы и их роста. При быстром – развивается сдвиговой механизм, как при мартенситном превращении в стали. Получаемая структура тоже называется мартенситом и имеет игольчатую структуру. Но титановый мартенсит не обладает такой высокой твердостью и прочностью, как мартенсит в стали. Он имеет довольно высокую пластичность. Дело в разной природе твердых растворов: углерод образует с железом раствор внедрения, а алюминий с титаном – замещения.
Возможно также сохранение при комнатной температуре переохлажденной β-фазы (подобно аустениту в сталях). В некоторых сплавах образуется эвтектоид, но он хрупок и не улучшает механических свойств сплава.
Марки титановых сплавов: ВТ4, ВТ6, ВТ15, ВТ22 (один из самых прочных: σв = 1300-1600 МПа).
Области применения сплавов титана:
1) авиа и ракетостроение (обшивка сверхзвуковых самолетов, корпуса двигателей, баллоны для газов, сопла, диски и лопатки компрессора авиационного двигателя, детали фюзеляжа, крепеж, корпуса второй и третьей ступеней ракет);
2) химическая промышленность (компрессоры, клапаны, вентили, баллоны для сжиженных газов и агрессивных жидкостей);
3) судостроение (гребные винты, обшивка морских судов и подводных лодок);
4) оборудование для обработки ядерного топлива;
5) криогенная техника (работающая при очень низких температурах).
