
- •Новые материалы в металлургии
- •Содержание
- •Раздел 1. Материалы в современной технике
- •Раздел 2.Магнитные материалы
- •6.1 Общие сведения
- •7.1 Общие сведения
- •11.1 Общие сведения
- •Новые конструкционные материалы и область их применения
- •Классификация конструкционных материалов
- •Основные магнитные характеристики материалов
- •Магнитный гистерезис
- •Магнитомягкие материалы
- •Кремнистая электротехническая сталь
- •Сплавы с высокой начальной магнитной проницаемостью
- •Магнитодиэлектрики
- •Ферриты
- •Магнитотвердые материалы
- •Углеродистые и легированные стали мартенситной структуры
- •Литые высококоэрцитивные сплавы
- •Металлокерамические и металлопластические магниты
- •Магнитотвердые ферриты
- •Пластически деформируемые сплавы
- •Сплавы на основе редкоземельных элементов
- •Сплавы для магнитных носителей информации
- •Парамагнитные материалы
- •Проводниковые металлы и сплавы
- •Сверхпроводимость
- •Сверхпроводящие материалы и технология их производства
- •Перспектива использования сверхпроводящих материалов
- •Стали и сплавы с высоким омическим сопротивлением
- •Сплавы с особыми тепловыми и упругими свойствами (Общие сведения)
- •Сплавы с регламентируемым температурным коэффициентом линейного расширения
- •Сплавы с постоянным модулем упругости
- •Жаростойкие и жаропрочные стали и сплавы
- •Жаростойкие стали
- •Критерии жаропрочности
- •Влияние структуры на жаропрочность сплавов
- •Жаропрочность сплавов цветных металлов и сталей
- •Суперсплавы
- •Коррозия и коррозионностойкие материалы. Общие сведения
- •Виды электрохимической коррозии
- •Методы защиты от коррозии
- •Коррозионностойкие стали
- •Коррозионностойкие сплавы цветных металлов
- •Хладостойкие металлы и сплавы. Общие сведения
- •Хладостойкие стали. Хладостойкость сталей климатического холода
- •Хладостойкие стали. Стали криогенной техники
- •Железоникелевые сплавы
- •Радиационно-стойкие материалы
- •Основные компоненты современного ядерного реактора
- •Радиационная повреждаемость конструкционных материалов
- •Состав и свойства реакторных материалов
- •Металлы с памятью формы. Механизм эффекта памяти формы
- •Технология производства и свойства сплавов с эффектом памяти формы
- •Применение сплавов с эффектом памяти формы
- •Порошковые материалы Общие сведения
- •Конструкционные материалы.(Конструкционные порошковые материалы)
- •Антифрикционные материалы
- •Фрикционные материалы (Порошковые фрикционные материалы)
- •Пористые фильтрующие элементы
- •Инструментальные порошковые стали
- •Карбидостали
- •Условия образования аморфной структуры
- •Методы получения аморфных металлов
- •Свойства аморфных сплавов Маркировка аморфных сплавов
- •Механические свойства сплавов
- •Свойства аморфных сплавов. Магнитные свойства
- •Свойства аморфных сплавов. Коррозионные свойства аморфных сплавов
- •Нанокристаллические сплавы
- •Основные области применения аморфных металлических материалов
- •Композиционные материалы Общая характеристика и классификация
- •Дисперсноупрочненные композиционные материалы
- •Волокнистые композиционные материалы
- •Слоистые композиты
- •Свойства и применение композиционных материалов
- •Керамическая технология и классификация керамики
- •Свойства и применение керамических материалов
- •Полимерные материалы и пластмассы Состав и строение полимеров
- •Основные свойства полимеров
- •Покрытия в машиностроении Общая характеристика покрытий и способов их нанесения
- •Металлические покрытия Цинковые покрытия
- •Металлические покрытия Алюминиевые покрытия
- •Металлические покрытия Оловянные и хромсодержащие покрытия
- •Металлические покрытия Покрытия плакированием
- •Металлические покрытия Осаждение в вакууме или из газовой фазы
- •Неметаллические покрытия Неорганические покрытия и способы их нанесения
- •Неметаллические покрытия Органические полимерные покрытия
- •Неметаллические покрытия Лакокрасочные покрытия
Антифрикционные материалы
Для изготовления подшипников скольжения, уплотнений, подпятников наряду с литыми сплавами (бронзы, баббиты и чугуны) используют антифрикционные материалы, изготовленные методом порошковой металлургии. Они создаются на основе меди или железа и содержат вещества типа твердых смазок (графит, сульфиды и др.), что обеспечивает им заданные механические и эксплуатационные свойства.
Антифрикционные порошковые материалы характеризуются низким коэффициентом трения, хорошей износостойкостью, способностью легко прирабатываться к валу и выдерживать значительные нагрузки. Они обладают рядом преимуществ по сравнению с обычными антифрикционными материалами. Их износостойкость в несколько раз выше, чем у бронз и баббитов. Они работают при более высоких скоростях и давлениях. Наличие в структуре пористости, регулируемой в широких пределах (до 35 %), позволяет предварительно пропитывать их смазочными маслами. Во время работы по мере нагревания масло, удерживаемое в порах и мельчайших каналах материала капиллярными силами, постепенно вытесняется наружу и образует смазочную пленку на рабочей поверхности. При остановке и последующем охлаждении подшипника масло частично всасывается обратно в поры. Поэтому пористые подшипники могут работать длительное время без дополнительной смазки. Эффект самосмазываемости в пропитанных маслом пористых подшипниках без подвода смазки извне может сохраняться в течение 3000 – 5000 ч.
Композиционные антифрикционные порошковые материалы позволяют иметь равномерно распределенные включения из веществ, играющих роль твердой смазки. К таким веществам относятся графит, сульфиды, пластмассы и некоторые другие соединения. Такие материалы имеют сравнительно низкий коэффициент трения при работе в режиме сухого трения без жидкой смазки. Сочетание повышенных антифрикционных свойств твердых смазок и пластмасс со свойствами металлов позволяет получать материалы, способные работать в воде, агрессивных жидкостях, бензине, различных газовых средах, в вакууме, а также в условиях высоких и низких температур.
Порошковые антифрикционные материалы могут представлять собой каркасные конструкции, в которых каркас выполнен из прочного материала, а промежутки заполнены более мягким материалом. Можно, наоборот, иметь мягкую матрицу с равномерно распределенными твердыми включениями разной степени дисперсности, повышающими работоспособность подшипников. Эти особенности позволяют осуществлять направленное регулирование свойств порошковых антифрикционных материалов применительно к конкретным условиям эксплуатации.
Внедрение порошковых подшипников скольжения повышает надежность и долговечность работающего оборудования, снижает трудоемкость процесса их изготовления, позволяет уменьшить отходы металла в стружку, обеспечивает экономию дефицитных цветных металлов и сплавов.
РАЗДЕЛ 11.4 |
|
Фрикционные материалы (Порошковые фрикционные материалы)
Порошковые фрикционные материалы предназначены для работы в различных тормозных и передаточных узлах автомобилей, гусеничных машин, дорожных и строительных механизмов, самолетов, станков, прессов и т. п. Фрикционные элементы из порошковых материалов изготовляют в виде дисков, секторных накладок и колодок различной конфигурации. Применяют порошковые фрикционные материалы на основе меди и на основе железа.
Порошковые материалы на основе оловянистых и алюминиевых бронз, содержащие свинец, графит и железо, предназначены преимущественно для работы в условиях трения со среднеуглеродистыми сталями с твердостью 40 – 45 HRC при давлении до 35 МПа и скорости скольжения до 50 м/с. При меньших давлениях и скоростях до 5 м/с используют металлопластмассовые материалы.
Порошковые материалы на основе железа, содержащие добавки меди, графита, оксида кремния, асбеста, сульфата бария, предназначены для работы в условиях трения при давлениях до 300 МПа и скоростях до 60 м/с в паре с чугуном либо легированной сталью в тормозных устройствах различной конструкции – дисковых, колодочных, ленточных тормозах.
В сравнении с асбофрикционными материалами порошковые материалы обладают более высокими значениями термо- и износостойкости (в 2 – 4 раза), а в некоторых случаях, например при работе с легированным чугуном, и более высоким (на 15 – 25 %) коэффициентом трения.
РАЗДЕЛ 11.5 |
|