
Множество существенных импликант
T=
г) Выбор минимального покрытия.
1. Метод Петрика.
Y=AvB
Возможны следующие варианты покрытия:
C1=C2=
S1a=18, S1b=22 S2a=18, S2b=22
Минимальные покрытия функции – C1 и С2:
Cmin1(f)=Сmin2(f)=
Sa1=18, Sb1=22 Sa2=18, Sb2=22
Этим покрытиям соответствует МДНФ следующего вида:
_ _ _ _ _ _ _ _ _ _ _ _ _ _
f1=X1X2X3X5vX1X2X3X4X5vX1X2X3X4X5vX2X3X4X5 и
_ _ _ _ _ _ _ _ _ _ _ _ _ _
f2=X1X2X3X5vX1X2X3X4X5vX1X2X3X4X5vX1X2X3X4
2. Метод дальнейшего упрощения импликантной таблицы.
Импликанты |
0 – кубы | ||
0 0 0 1 0 | |||
2 | |||
1 |
A |
X0010 |
|
2 |
B |
0001X |
|
Дальнейшее упрощение невозможно.
4. Минимизация булевой функции на картах Карно.
1 вариант:
|
X1X2 |
|
|
|
|
|
|
X1X2 |
|
|
|
|
|
|
00 |
01 |
11 |
10 |
|
X3X4 |
|
00 |
01 |
11 |
10 |
|
00 |
|
1 |
|
|
|
|
00 |
1 |
|
d |
|
|
01 |
1 |
|
|
d |
|
|
01 |
1 |
|
|
|
|
11 |
|
|
|
|
|
|
11 |
|
|
|
|
|
10 |
1 |
|
|
|
|
|
10 |
|
|
|
|
Cmin(f)=
Sa=18, Sb=22
МДНФ имеет следующий вид:
f=X1X2X3X5vX1X2X3X4X5vX1X2X3X4X5vX2X3X4X5
2 вариант:
|
X1X2 |
|
|
|
|
|
|
X1X2 |
|
|
|
|
|
|
00 |
01 |
11 |
10 |
|
X3X4 |
|
00 |
01 |
11 |
10 |
|
00 |
|
1 |
|
|
|
|
00 |
1 |
|
d |
|
|
01 |
1 |
|
|
d |
|
|
01 |
1 |
|
|
|
|
11 |
|
|
|
|
|
|
11 |
|
|
|
|
|
10 |
1 |
|
|
|
|
|
10 |
|
|
|
|
Сmin(f)=
Sa=18, Sb=22
МДНФ имеет следующий вид:
f=X1X2X3X5vX1X2X3X4X5vX1X2X3X4X5vX1X2X3X4
Нахождение простых имплицент:
Ko(ƒ) N(ƒ) |
K1(ƒ) |
K2(ƒ) |
K3(ƒ) |
K4(ƒ) |
Z(ƒ) | |||||||||||||||
1 |
00000 |
|
1 |
X0000 |
1-2 |
|
1 |
100XX |
2-19 |
|
1 |
10XXX |
1-27 |
|
1 |
1XXXX |
1-13 |
|
1 |
1XXXX |
2 |
10000 |
|
2 |
1000X |
2-8 |
|
2 |
10X0X |
2-22 |
|
2 |
1X0XX |
1-30 |
|
|
|
2-12 |
|
2 |
XX1X1 |
3 |
00101 |
|
3 |
100X0 |
2-9 |
|
3 |
1X00X |
2-25 |
|
|
|
2-24 |
|
|
|
3-11 |
|
3 |
XX11X |
4 |
00110 |
|
4 |
10X00 |
2-10 |
|
|
|
3-16 |
|
3 |
1XX0X |
2-31 |
|
|
|
4-10 |
|
4 |
X1XX1 |
5 |
01001 |
|
5 |
1X000 |
2-11 |
|
4 |
10XX0 |
3-23 |
|
|
|
3-25 |
|
|
|
|
|
5 |
X1X1X |
6 |
01010 |
|
6 |
001X1 |
3-12 |
|
5 |
1X0X0 |
3-26 |
|
|
|
3-28 |
|
|
|
|
|
6 |
X11XX |
7 |
01100 |
|
7 |
0X101 |
3-14 |
|
|
|
4-17 |
|
|
|
4-21 |
|
|
|
|
|
7 |
X0000 |
8 |
10001 |
|
8 |
0011X |
4-12 |
|
|
|
4-20 |
|
4 |
1XXX0 |
4-32 |
|
|
|
|
|
|
|
9 |
10010 |
|
9 |
0X110 |
4-15 |
|
6 |
1XX00 |
4-27 |
|
|
|
5-22 |
|
|
|
|
|
|
|
10 |
10100 |
|
10 |
01X01 |
5-14 |
|
|
|
5-18 |
|
|
|
5-29 |
|
|
|
|
|
|
|
11 |
11000 |
|
11 |
01X10 |
6-15 |
|
|
|
5-21 |
|
|
|
6-23 |
|
|
|
|
|
|
|
12 |
00111 |
|
12 |
X1010 |
6-20 |
|
|
|
5-24 |
|
|
|
6-26 |
|
|
|
|
|
|
|
13 |
01011 |
|
13 |
0110X |
7-14 |
|
7 |
0X1X1 |
6-32 |
|
5 |
XX1X1 |
7-38 |
|
|
|
|
|
|
|
14 |
01101 |
|
14 |
011X0 |
7-15 |
|
8 |
X01X1 |
6-38 |
|
|
|
8-35 |
|
|
|
|
|
|
|
15 |
01110 |
|
15 |
X1100 |
7-21 |
|
|
|
7-28 |
|
|
|
9-33 |
|
|
|
|
|
|
|
16 |
10011 |
|
16 |
100X1 |
8-16 |
|
9 |
XX101 |
7-39 |
|
6 |
XX11X |
10-39 |
|
|
|
|
|
|
|
17 |
10101 |
|
17 |
10X01 |
8-17 |
|
10 |
0X11X |
8-34 |
|
|
|
11-36 |
|
|
|
|
|
|
|
18 |
10110 |
|
18 |
1X001 |
8-19 |
|
11 |
X011X |
8-40 |
|
|
|
12-33 |
|
|
|
|
|
|
|
19 |
11001 |
|
19 |
1001X |
9-16 |
|
|
|
9-28 |
|
7 |
X1XX1 |
13-40 |
|
|
|
|
|
|
|
20 |
11010 |
|
20 |
10X10 |
9-18 |
|
12 |
XX110 |
9-41 |
|
|
|
14-34 |
|
|
|
|
|
|
|
21 |
11100 |
|
21 |
1X010 |
9-20 |
|
13 |
01XX1 |
10-30 |
|
8 |
X1X1X |
15-41 |
|
|
|
|
|
|
|
22 |
01111 |
|
22 |
1010X |
10-17 |
|
14 |
X1X01 |
10-43 |
|
|
|
16-34 |
|
|
|
|
|
|
|
23 |
10111 |
|
23 |
101X0 |
10-18 |
|
15 |
01X1X |
11-30 |
|
|
|
17-36 |
|
|
|
|
|
|
|
24 |
11011 |
|
24 |
1X100 |
10-21 |
|
16 |
X1X10 |
11-45 |
|
9 |
X11XX |
18-42 |
|
|
|
|
|
|
|
25 |
11101 |
|
25 |
1100X |
11-19 |
|
17 |
X101X |
12-31 |
|
|
|
19-36 |
|
|
|
|
|
|
|
26 |
11110 |
|
26 |
110X0 |
11-20 |
|
|
|
12-35 |
|
|
|
20-35 |
|
|
|
|
|
|
|
27 |
11111 |
|
27 |
11X00 |
11-21 |
|
18 |
011XX |
13-34 |
|
10 |
1XXX1 |
21-40 |
|
|
|
|
|
|
|
|
|
|
28 |
0X111 |
12-22 |
|
19 |
X110X |
13-46 |
|
|
|
22-38 |
|
|
|
|
|
|
|
|
|
|
29 |
X0111 |
12-23 |
|
|
|
14-32 |
|
|
|
23-37 |
|
|
|
|
|
|
|
|
|
|
30 |
01X11 |
13-22 |
|
20 |
X11X0 |
14-47 |
|
11 |
1XX1X |
24-41 |
|
|
|
|
|
|
|
|
|
|
31 |
X1011 |
13-24 |
|
|
|
15-33 |
|
|
|
25-39 |
|
|
|
|
|
|
|
|
|
|
32 |
011X1 |
14-22 |
|
|
|
15-35 |
|
|
|
26-37 |
|
|
|
|
|
|
|
|
|
|
33 |
X1101 |
14-25 |
|
21 |
10XX1 |
16-38 |
|
12 |
1X1XX |
27-42 |
|
|
|
|
|
|
|
|
|
|
34 |
0111X |
15-22 |
|
22 |
1X0X1 |
16-42 |
|
|
|
28-39 |
|
|
|
|
|
|
|
|
|
|
35 |
X1110 |
15-26 |
|
|
|
17-36 |
|
|
|
29-38 |
|
|
|
|
|
|
|
|
|
|
36 |
10X11 |
16-23 |
|
23 |
1XX01 |
17-43 |
|
13 |
11XXX |
30-42 |
|
|
|
|
|
|
|
|
|
|
37 |
1X011 |
16-24 |
|
|
|
18-37 |
|
|
|
31-41 |
|
|
|
|
|
|
|
|
|
|
38 |
101X1 |
17-23 |
|
|
|
18-39 |
|
|
|
32-40 |
|
|
|
|
|
|
|
|
|
|
39 |
1X101 |
17-25 |
|
24 |
10X1X |
19-40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
1011X |
18-23 |
|
25 |
1X01X |
19-44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
1X110 |
18-26 |
|
|
|
20-36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
110X1 |
19-24 |
|
26 |
1XX10 |
20-45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
11X01 |
19-25 |
|
|
|
21-37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
1101X |
20-24 |
|
|
|
21-41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
11X10 |
20-26 |
|
27 |
101XX |
22-40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
1110X |
21-25 |
|
28 |
1X10X |
22-46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
111X0 |
21-26 |
|
|
|
23-38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
X1111 |
22-27 |
|
29 |
1X1X0 |
23-47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
1X111 |
23-27 |
|
|
|
24-39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
11X11 |
24-27 |
|
|
|
24-41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
111X1 |
25-27 |
|
30 |
110XX |
25-44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
1111X |
26-27 |
|
31 |
11X0X |
25-46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26-42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
11XX0 |
26-47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27-43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27-45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
XX111 |
28-49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29-48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
X1X11 |
30-50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31-48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
X11X1 |
32-51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33-48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
X111X |
34-52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35-48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
1XX11 |
36-50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37-49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
1X1X1 |
38-51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39-49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
1X11X |
40-52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42-49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
11XX1 |
43-50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
11X1X |
44-52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45-50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
111XX |
46-52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47-51 |
|
|
|
|
|
|
|
|
|
|
|
б) Составление имплицентной таблицы.
Имплиценты |
0 – кубы | |||||||||||||||||||||||||
0 0 0 0 0 |
0 0 1 0 1 |
0 0 1 1 0 |
0 0 1 1 1 |
0 1 0 0 1 |
0 1 0 1 0 |
0 1 0 1 1 |
0 1 1 0 0 |
0 1 1 0 1 |
0 1 1 1 0 |
0 1 1 1 1 |
1 0 0 0 0 |
1 0 0 0 1 |
1 0 0 1 1 |
1 0 1 0 0 |
1 0 1 0 1 |
1 0 1 1 0 |
1 0 1 1 1 |
1 1 0 0 0 |
1 1 0 1 0 |
1 1 0 1 1 |
1 1 1 0 0 |
1 1 1 0 1 |
1 1 1 1 0 |
1 1 1 1 1 | ||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 | ||
1 |
1XXXX |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
XX1X1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
XX11X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
X1XX1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
X1X1X |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
X11XX |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
X0000 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T=
Cmin=
МКНФ имеет следующий вид:
_ _ _ _ _ _ _ _ _ _ _
f=(X2vX4)(X3vX4)(X2vX3vX4vX5)(X2vX3)(X1)(X2vX5)(X3vX5)
4.Минимизация на картах Карно:
|
X1X2 |
|
|
|
|
|
|
X1X2 |
|
|
|
|
X3X4 |
|
00 |
01 |
11 |
10 |
|
X3X4 |
|
00 |
01 |
11 |
10 |
|
00 |
0 |
|
0 |
0 |
|
|
00 |
|
0 |
d |
0 |
|
01 |
|
0 |
0 |
d |
|
|
01 |
|
0 |
0 |
0 |
|
11 |
0 |
0 |
0 |
0 |
|
|
11 |
0 |
0 |
0 |
0 |
|
10 |
|
0 |
0 |
0 |
|
|
10 |
0 |
0 |
0 |
0 |
Сmin(f)=
МКНФ имеет следующий вид:
_ _ _ _ _ _ _ _ _ _ _
f=(X2vX4)(X3vX4)(X2vX3vX4vX5)(X2vX3)(X1)(X2vX5)(X3vX5)
5.1 Факторное преобразование для МДНФ:
_ _ _ _ _ _ _ _ _ _ _ _ _ _
f1=X1X2X3X5vX1X2X3X4X5vX1X2X3X4X5vX2X3X4X5= Sq=22
_ _ _ _ _ _ _ _ _
=X1X4X5(X2X3vX2X3)vX2X3(X1X5vX4X5) Sq=21
_ _ _ _ _ _ _ _ _ _ _ _ _ _
f2=X1X2X3X5vX1X2X3X4X5vX1X2X3X4X5vX1X2X3X4= Sq=22
_ _ _ _ _ _ _ _ _
=X1X2X3(X4vX5)vX1X5(X2X3X4vX2X3X4)= Sq=19
_ _ _ _ _ _ _ _ _
= X1X2X3vX1X2X3X4X5v X1X2X3 Sq=19
_ _ _
=X4vX5 =X4X5
5.2. Факторное преобразование МКНФ:
_ _ _ _ _ _ _ _ _ _ _
f=(X2vX4)(X3vX4)(X2vX3vX4vX5)(X2vX3)(X1)(X2vX5)(X3vX5) Sq=21
_ _ _ _ _ _ _ _ _ _ _ _ _ _
(X2vX4)(X3vX4)=(X4vX2X3) (X2vX5)(X3vX5)=(X5vX2X3)
_ _ _ _ _ _ _ _ _ _
(X4vX2X3) (X5vX2X3)=(X2X3vX4X5)
_ _ _ _ _ _ _
f=(X2X3vX4X5)(X2vX3vX4vX5)(X2vX3)X1= Sq=16
_ _ _ _ _ _
=(vX4X5)(vX4vX5)(X2vX3)X1= Sq=16
_ _ _
=X2X3 =X2vX3
_ _ _ _ _ _ _ _ _ _
=(v)(v)(X2vX3)X1=(v)(X2vX3)X1 Sq=15
_ _ _
=X4X5 =X4v X5
6.1 Синтез комбинационных схем в булевом базисе:
_ _ _ _ _ _ _ _ _
f=(v)(X2vX3)X1 =X2X3 =X4X5
|
|
|
|
_ |
|
|
_ |
|
|
|
|
T=5 |
|
& |
|
1 |
|
|
|
X2 |
1 |
|
|
|
|
|
|
|
|
|
|
|
_ |
|
|
|
|
|
|
|
|
|
|
|
|
X3 |
|
|
|
|
|
|
|
|
|
_ |
|
|
|
|
|
|
|
|
|
& |
|
1 |
|
|
& |
|
|
X1 |
& |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
& |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.2 С однофазными входами:
|
1 |
|
|
|
|
|
|
|
|
|
|
|
T=6 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
_ |
|
|
|
|
|
|
|
|
|
|
& |
|
1 |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
& |
|
|
|
|
|
|
|
|
_ |
& |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
& |
|
1 |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
& |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.3 Универсальный базис И-НЕ с ограничением на входы 2.
|
|
|
|
|
|
|
|
|
|
|
|
|
T=7 |
|
& |
|
& |
|
|
& |
X2 |
& |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_ |
|
|
|
|
X3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
& |
X1 |
& |
& |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
& |
|
& |
|
|
& |
|
& |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6.4 Базис Ожигалкина:
|
|
|
|
|
|
|
|
_ |
|
|
|
|
|
T=8 | |
|
& |
1 |
M2 |
|
& |
1 |
M2 |
X2 |
& |
1 |
M2 |
|
|
|
|
|
|
|
|
|
|
|
|
_ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_ |
|
|
& |
1 |
M2 |
|
& |
1 |
M2 |
|
& |
1 |
M2 |
|
& |
X1 |
& |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Сокращенный булев базис:
|
|
|
|
|
|
|
|
_ |
|
|
|
|
|
T=7 | |
|
& |
|
1 |
|
& |
1 |
|
X2 |
& |
1 |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
_ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X1 |
|
|
|
|
& |
|
1 |
|
& |
1 |
|
|
& |
|
1 |
|
& |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|