Скачиваний:
45
Добавлен:
09.05.2014
Размер:
723.46 Кб
Скачать

Множество существенных импликант

T =

;

01x11 Sa = 8, Sb = 10.

0111x

г) Выбор минимального покрытия.

1. Метод Петрика.

Y = (C v D) (A v E) (C v E) (F v G) (C v D v F v G v H) (E v F) (B v I) (D v I) (A v B) (G v I) (D v G v H v I) = (C v DE) (A v EB) (G v FI) (D v G v H v CI v FI) (E v F) (I v BD) = (CA v CED v DEA v DEB) (GI v GBD v FI v FBD )(DE v GE v HE v CIE v FIE v DF v GF v HF v CIF v FI) = (CAGI v CAGBD v CAFI v CAFBD v CEDGI v CEDGB v CEDFI v CEDFB v DEAGI v DEAGB v DEAFI v DEAFB v DEBCI v DEG v DEBFI v DEBF) (DE v GE v HE v CIE v FIE v DF v GF v HF v CIF v FI) = (CAGI v CAGBD v CAFI v CAFBD v CEDFI v DEAFI v DEBCI v DEG v DEBF) (DE v GE v HE v CIE v FIE v DF v GF v HF v FI) = ACFI v BDEG v BDEFI v BCEFI v ACEGI v BCEGI v ADEFI v ADEGI v ABCDFG v …

Минимальные покрытия функции :

1)

Cmin(f) =

T

A

C =

F

I

01x11

0111x

1x010

10xx1

101xx

11x0x

Sa = 21, Sb = 27.

_ _ _ _ _ _ _

ƒ = X1X2X4X5 v X1X2X3X4 v X1X3X4X5 v X1X2X5 v X1X2X3 v X1X2X4 ;

Cmin(f) =

T

B

D =

E

G

01x11

0111x

110x0

1xx01

10x1x

1x10x

Sa = 21, Sb = 27.

_ _ _ _ _ _ _

ƒ = X1X2X4X5 v X1X2X3X4 v X1X3X4X5 v X1X4X5 v X1X2X4 v X1X3X4 ;

Cmin(f) =

T

B

D =

E

F

I

01x11

0111x

110x0

1xx01

10x1x

101xx

11x0x

Sa = 24, Sb = 31.

_ _ _ _ _ _ _ _

ƒ = X1X2X4X5 v X1X2X3X4 v X1X3X4X5 v X1X4X5 v X1X2X4 v X1X2X3 v X1X2X4 ;

Cmin(f) =

T

B

C =

E

F

I

01x11

0111x

110x0

10xx1

10x1x

101xx

11x0x

Sa = 24, Sb = 31.

_ _ _ _ _ _ _ _

ƒ = X1X2X4X5 v X1X2X3X4 v X1X3X4X5 v X1X2X5 v X1X2X4 v X1X2X3 v X1X2X4 ;

Cmin(f) =

T

A

C =

E

G

I

01x11

0111x

1x010

10xx1

10x1x

1x10x

11x0x

Sa = 24 Sb = 31.

_ _ _ _ _ _ _ _

ƒ = X1X2X4X5 v X1X2X3X4 v X1X3X4X5 v X1X2X5 v X1X2X4 v X1X3X4 v X1X2X4 ;

3.2 б) Нахождение простых имплицент.

N

Ko(ƒ) N(ƒ)

*

N

K1(ƒ)

*

N

K2(ƒ)

*

N

K3(ƒ)

*

N

Z(ƒ)

1

00000

*

1

0000x

1-2

*

1

000xx

1-9

*

1

00xxx

1-10

1

x0000

2

00001

*

2

000x0

1-3

*

2

00x0x

1-13

*

2

0xx0x

2-14

2

11x11

3

00010

*

3

00x00

1-5

*

3

0x00x

1-21

*

3

1111x

4

00011

*

4

0x000

1-9

*

4

00xx0

2-14

*

4

0x0x0

5

00100

*

5

x0000

1-15

5

0x0x0

2-22

5

0x1x1

6

00101

*

6

000x1

2-4

*

6

0xx00

3-23

*

6

xx111

7

00110

*

7

00x01

2-6

*

7

00xx1

6-16

*

7

00xxx

8

00111

*

8

0x001

2-10

*

8

0xx01

7-24

*

8

0xx0x

9

01000

*

9

0001x

3-4

*

9

00x1x

9-18

*

10

01001

*

10

00x10

3-7

*

10

001xx

13-18

*

11

01010

*

11

0x010

3-11

*

11

0x10x

13-25

*

12

01101

*

12

00x11

4-8

*

12

0x1x1

16-26

13

01111

*

13

0010x

5-6

*

13

xx111

19-28

14

10000

*

14

001x0

5-7

*

14

01x0x

21-25

*

15

11011

*

15

0x100

5-12

*

16

11110

*

16

001x1

6-8

*

17

11111

*

17

0x101

6-13

*

18

11101

*

18

0011x

7-8

*

19

11111

*

19

0x111

8-14

*

20

x0111

8-16

*

21

0100x

9-10

*

22

010x0

9-11

*

23

01x00

9-12

*

24

01x01

10-13

*

25

0110x

12-13

*

26

011x1

13-14

*

27

x1111

14-19

*

28

1x111

16-19

*

29

11x11

17-19

30

1111x

18-19

б) Составление имплицентной таблицы.

00000

00001

00010

00011

00100

00101

00110

01000

01001

01010

01100

01101

10000

11011

11110

#

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

x0000

1

*

*

11x11

2

*

1111x

3

*

0x0x0

4

*

*

*

*

0x1x1

5

*

*

xx111

6

00xxx

7

*

*

*

*

*

*

*

*

*

0xx0x

8

*

*

*

*

*

*

*

*