
Множество существенных импликант
T =
;
0111x
г) Выбор минимального покрытия.
1. Метод Петрика.
Y = (C v D) (A v E) (C v E) (F v G) (C v D v F v G v H) (E v F) (B v I) (D v I) (A v B) (G v I) (D v G v H v I) = (C v DE) (A v EB) (G v FI) (D v G v H v CI v FI) (E v F) (I v BD) = (CA v CED v DEA v DEB) (GI v GBD v FI v FBD )(DE v GE v HE v CIE v FIE v DF v GF v HF v CIF v FI) = (CAGI v CAGBD v CAFI v CAFBD v CEDGI v CEDGB v CEDFI v CEDFB v DEAGI v DEAGB v DEAFI v DEAFB v DEBCI v DEG v DEBFI v DEBF) (DE v GE v HE v CIE v FIE v DF v GF v HF v CIF v FI) = (CAGI v CAGBD v CAFI v CAFBD v CEDFI v DEAFI v DEBCI v DEG v DEBF) (DE v GE v HE v CIE v FIE v DF v GF v HF v FI) = ACFI v BDEG v BDEFI v BCEFI v ACEGI v BCEGI v ADEFI v ADEGI v ABCDFG v …
Минимальные покрытия функции :
1)
Cmin(f) = |
T A C = F I |
01x11 0111x 1x010 10xx1 101xx 11x0x |
Sa = 21, Sb = 27.
_ _ _ _ _ _ _
ƒ = X1X2X4X5 v X1X2X3X4 v X1X3X4X5 v X1X2X5 v X1X2X3 v X1X2X4 ;
Cmin(f) = |
T B D = E G |
01x11 0111x 110x0 1xx01 10x1x 1x10x |
Sa = 21, Sb = 27.
_ _ _ _ _ _ _
ƒ = X1X2X4X5 v X1X2X3X4 v X1X3X4X5 v X1X4X5 v X1X2X4 v X1X3X4 ;
Cmin(f) = |
T B D = E F I |
01x11 0111x 110x0 1xx01 10x1x 101xx 11x0x |
Sa = 24, Sb = 31.
_ _ _ _ _ _ _ _
ƒ = X1X2X4X5 v X1X2X3X4 v X1X3X4X5 v X1X4X5 v X1X2X4 v X1X2X3 v X1X2X4 ;
Cmin(f) = |
T B C = E F I |
01x11 0111x 110x0 10xx1 10x1x 101xx 11x0x |
Sa = 24, Sb = 31.
_ _ _ _ _ _ _ _
ƒ = X1X2X4X5 v X1X2X3X4 v X1X3X4X5 v X1X2X5 v X1X2X4 v X1X2X3 v X1X2X4 ;
Cmin(f) = |
T A C = E G I |
01x11 0111x 1x010 10xx1 10x1x 1x10x 11x0x |
Sa = 24 Sb = 31.
_ _ _ _ _ _ _ _
ƒ = X1X2X4X5 v X1X2X3X4 v X1X3X4X5 v X1X2X5 v X1X2X4 v X1X3X4 v X1X2X4 ;
3.2 б) Нахождение простых имплицент.
N |
Ko(ƒ) N(ƒ) |
* |
N |
K1(ƒ) |
|
* |
N |
K2(ƒ) |
|
* |
N |
K3(ƒ) |
|
* |
N |
Z(ƒ) |
1 |
00000 |
* |
1 |
0000x |
1-2 |
* |
1 |
000xx |
1-9 |
* |
1 |
00xxx |
1-10 |
|
1 |
x0000 |
2 |
00001 |
* |
2 |
000x0 |
1-3 |
* |
2 |
00x0x |
1-13 |
* |
2 |
0xx0x |
2-14 |
|
2 |
11x11 |
3 |
00010 |
* |
3 |
00x00 |
1-5 |
* |
3 |
0x00x |
1-21 |
* |
|
3 |
1111x |
|||
4 |
00011 |
* |
4 |
0x000 |
1-9 |
* |
4 |
00xx0 |
2-14 |
* |
4 |
0x0x0 |
||||
5 |
00100 |
* |
5 |
x0000 |
1-15 |
|
5 |
0x0x0 |
2-22 |
|
5 |
0x1x1 |
||||
6 |
00101 |
* |
6 |
000x1 |
2-4 |
* |
6 |
0xx00 |
3-23 |
* |
6 |
xx111 |
||||
7 |
00110 |
* |
7 |
00x01 |
2-6 |
* |
7 |
00xx1 |
6-16 |
* |
7 |
00xxx |
||||
8 |
00111 |
* |
8 |
0x001 |
2-10 |
* |
8 |
0xx01 |
7-24 |
* |
8 |
0xx0x |
||||
9 |
01000 |
* |
9 |
0001x |
3-4 |
* |
9 |
00x1x |
9-18 |
* |
|
|||||
10 |
01001 |
* |
10 |
00x10 |
3-7 |
* |
10 |
001xx |
13-18 |
* |
||||||
11 |
01010 |
* |
11 |
0x010 |
3-11 |
* |
11 |
0x10x |
13-25 |
* |
||||||
12 |
01101 |
* |
12 |
00x11 |
4-8 |
* |
12 |
0x1x1 |
16-26 |
|
||||||
13 |
01111 |
* |
13 |
0010x |
5-6 |
* |
13 |
xx111 |
19-28 |
|
||||||
14 |
10000 |
* |
14 |
001x0 |
5-7 |
* |
14 |
01x0x |
21-25 |
* |
||||||
15 |
11011 |
* |
15 |
0x100 |
5-12 |
* |
|
|||||||||
16 |
11110 |
* |
16 |
001x1 |
6-8 |
* |
||||||||||
17 |
11111 |
* |
17 |
0x101 |
6-13 |
* |
||||||||||
18 |
11101 |
* |
18 |
0011x |
7-8 |
* |
||||||||||
19 |
11111 |
* |
19 |
0x111 |
8-14 |
* |
||||||||||
|
|
20 |
x0111 |
8-16 |
* |
|||||||||||
21 |
0100x |
9-10 |
* |
|||||||||||||
22 |
010x0 |
9-11 |
* |
|||||||||||||
23 |
01x00 |
9-12 |
* |
|||||||||||||
24 |
01x01 |
10-13 |
* |
|||||||||||||
25 |
0110x |
12-13 |
* |
|||||||||||||
|
26 |
011x1 |
13-14 |
* |
|
|
||||||||||
27 |
x1111 |
14-19 |
* |
|||||||||||||
28 |
1x111 |
16-19 |
* |
|||||||||||||
29 |
11x11 |
17-19 |
|
|
|
|
||||||||||
30 |
1111x |
18-19 |
|
б) Составление имплицентной таблицы.
|
|
00000 |
00001 |
00010 |
00011 |
00100 |
00101 |
00110 |
01000 |
01001 |
01010 |
01100 |
01101 |
10000 |
11011 |
11110 |
|
# |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
x0000 |
1 |
* |
|
|
|
|
|
|
|
|
|
|
|
* |
|
|
11x11 |
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* |
|
1111x |
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
* |
0x0x0 |
4 |
* |
|
* |
|
|
|
|
* |
|
* |
|
|
|
|
|
0x1x1 |
5 |
|
|
|
|
|
* |
|
|
|
|
|
* |
|
|
|
xx111 |
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
00xxx |
7 |
* |
* |
* |
* |
* |
* |
* |
|
|
* |
|
|
* |
|
|
0xx0x |
8 |
* |
* |
|
|
* |
* |
|
* |
* |
|
* |
* |
|
|
|