Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 1 2012 СТАТИКА Методическое пособ 1.docx
Скачиваний:
28
Добавлен:
01.03.2025
Размер:
5.62 Mб
Скачать

Тема 4. Сочлененные системы

Сочленённой называется система нескольких тел, соединённых друг с другом при помощи внутренних связей: простого оперения, стержней или нитей (цепей), шарниров.

Пример 4.1 Балки АВ и ВД связаны друг с другом при помощи внутреннего шарнира В. Размеры, и расположение нагрузок показаны на рис.24.

Определить реакции шарниров А и Д.

Рассмотрим равновесие каждой балки АВ и ВД. Для этого изобразим балки АВ и ВД раздельно. На рис., б изображена балка АВ нагруженная равномерно распределённая нагрузка g=10kH, составляющей реакцией шарнира А (RA), и реакцией опоры в точке В (RАВ). На рис.4.1 в изображена балка ВД нагружена сосредоточенной силой F=10кН в точке С составляющей реакцией шарнира Д (RД), и реакцией опоры в точке В (RВД).

Рассмотрим равновесие балки АВ. Условие равновесия плоской системы сил:

RХ=0, ∑RУ=0. ∑МА=0. ∑МВ.

Рис.4.1

Определяем реакции опор шарниров А и В.

МВ= Fg·a/2- RA·a =g·a2/2-RA·a=10·0,5-1·RA=0.

RA=5 kH.

МА=RАВ∙а- Fg·a/2= 1∙RАВ-10∙0,5=0.

RАВ=5 кН.

Рассмотрим равновесие балки ВД.

Определяем реакцию опоры шарнира В и Д.

МВ= -F∙c+RД∙в=-10∙0,75+1,5∙

RД= =-7,5+RA=0.

RД=RBД=5 kH.

МД= F∙c-RВД∙в=10∙0,75-1,5∙ RВД =0.

RВД=5 кН.

Определяем суммарную реакцию шарнира В.

RB=RAB+RВД=5+5=10 кН.

Проверка: RA +RB +RД-g∙a-F=5+10+5-10-10=0.

Пример 4.2. Определить силу натяжения троса удерживающего в равновесии шар весом G=100H, а также силу давления шара на наклонную поверхность. Задачу решить графическим и аналитическим методами.

Графический метод (рис.4.2)

Строим силовой многоугольник.

Принимаем масштаб:

В произвольной точке О откладываем отрезок

Из точки О проводим прямую параллельно в масштабе вектор G, и прямую

параллельно ВС. Из конца вектора G проводим параллельно прямую АО.

Получили силовой треугольник. Производим замеры.

Натяжение в тросе ВС, FBC=µ×lВС=2×42=84Н.

Сила давления шара на наклонную поверхность FOA=µ×lOA=2×25=50Н.

Аналитический метод,

RY=-FOAY-FBCY-G=-=FOAsin300-FBCsin600-G=0.

Рис.4.2

Решаем уравнения.

-FOA=

Тема 5. Определение усилий в элементах кронштейна

Пример 5.1. К шарниру C перекинутый через блок прикреплён трос (рис.5.1), несущий груз G = 100 H. Положение стержней кронштейна и груза определены углами α = 300, δ = 400 и β = 300. Силой трения и скольжения в блоке пренебречь.

Определить усилия в стержнях АC и ВС графическим и графоаналитическим способами.

  1. Определение усилий в стержнях кронштейна графическим способом

Рассмотрим равновесие узла С.

Из четырёх сил, действующих на этот узел, нам известны натяжение вертикальной ветви троса, равное весу G и направленное вниз, и натяжение F наклонной ветви троса, которое из-за отсутствия трения на блоке равно по абсолютной величине напряжению вертикальной ветви.

Принимаем масштаб: 100кН в l=50 мм;

Построение силового многоугольника (Рис.5.1,б).

Так как узел С под действием сил F и G и усилий в стержнях АС и ВС находится в равновесии, то силовой многоугольник должен быть замкнутым. Следовательно, все стрелки в нём должны идти в одну сторону по обходу многоугольника, причём направление этого обхода определяется направлением известных сил F и G.

Мысленно, перенеся, направления найденных усилий на соответствующие стержни схемы конструкции, делаем вывод усилие в стержне ВС направлено к узлу С – стержень сжимается, стержень АС направлен от узла С – стержень растягивается.

Стороны этого многоугольника дают величины и направления усилий

Усилия в стержнях АС и ВС:

FAC= μ ∙ S1 = 2∙43 = 86 кН. FBC= μ ∙ S2 = 2∙73 = 146 kH.

R = μ ∙ S3 = 2 ∙ 96 = 192 kH.