
- •Методы оптимизации. Тест
- •2.1). Что означает слово «оптимизация»? Какая функция называется целевой? Дать определение локального и глобального минимумов функции.
- •2.2). Сравнить необходимые количества вычисленных значений Nd и Nn функции f(X) при поиске ее точки минимума на отрезке длины 1 с точностью 10-5 методом деления отрезка пополам и методом перебора.
- •2.3). Сформулировать достаточные условия сходимости метода Ньютона.
- •2.4). Сформулировать необходимые и достаточные условия безусловного экстремума функции f(X) одной переменной.
- •2.5). Функции какого вида называются квадратичными функциями n переменных?
- •2.8). Дать определение общей задачи линейного программирования.
- •2.1). Что такое точная нижняя грань функции на множестве? Как соотносятся точная нижняя грань и минимум функции на множестве? Привести примеры.
- •2.3). Сформулировать достаточное условие монотонной сходимости метода Ньютона. Скорость сходимости метода.
- •2.5). Чему равны градиент и гессиан квадратичной функции?
- •2.8). Дать определение канонической задачи линейного программирования.
- •2.1). Сформулировать условие Липшица для функции f(X) на отрезке [a,b]. Всякая ли унимодальная на отрезке [a,b] функция f(X) удовлетворяет на нем условию Липшица?
- •2.2). Доказать, что в методе дихотомии число итераций, необходимое для определения точки минимума с точностью ε, определяется формулой .
- •2.3). Является ли условие достаточным для того, чтобы число было точкой минимума унимодальной, но не выпуклой функции f(X)? Ответ сопроводить примером.
- •2.5). Каким свойством обладает квадратичная функция с положительно определенной матрицей a?
- •2.8). Описать алгоритм сведения общей задачи к задаче в канонической форме линейного программирования. Привести пример.
- •2.1). Сформулировать условие Липшица для функции f(X) на отрезке [a;b]. Всякая ли функция f(X), удовлетворяющая условию Липшица на отрезке [a;b], унимодальна на нем?
- •2.2). Доказать, что погрешность определения точки минимума X* функции f(X) методом перебора не превосходит величины .
- •2.3). Сформулировать оценку погрешности определения минимума f* многомодальной функции методом перебора.
- •2.4). Классифицировать квадратичную форму и матрицу Гессе .
- •2.8). Какие задачи линейного программирования можно решить графически?
- •2.1). Сформулировать свойства функций, удовлетворяющих на отрезке [a;b] условию Липшица.
- •2.3). Сформулировать достаточные условия сходимости метода Ньютона.
- •2.4). Классифицировать квадратичную форму и матрицу Гессе .
- •2.5). Что такое скорость сходимости минимизирующей последовательности? Какие скорости сходимости вы знаете?
- •2.8). Дать определение общей задачи линейного программирования.
- •2.1). Какая функция называется унимодальной на отрезке [a,b]? Сформулировать свойства унимодальных функций.
- •2.2). Зависит ли точность определения X*, которую гарантируют методы дихотомии и золотого сечения в результате n вычислений функции f(X), от конкретной функции f(X)?
- •2.3). Сформулировать достаточное условие монотонной сходимости метода Ньютона. Скорость сходимости метода.
- •2.4). Вычислить и нарисовать градиенты, а также вычислить матрицу Гессе функции в точках .
- •2.5). Когда говорят, что в итерационном процессе производится исчерпывающий спуск?
- •2.8). Дать определение канонической задачи линейного программирования.
- •2.1). Какая функция называется выпуклой на отрезке [a,b]? Каков геометрический смысл выпуклости функции? Сформулировать два необходимых и достаточных дифференциальных условий выпуклости функций.
- •2.2). Повысится ли эффективность метода поразрядного поиска, если шаг поиска ∆ последовательно уменьшать не в 4, а в какое-либо другое число раз? Ответ обосновать.
- •2.3). Модификации метода Ньютона (метод Ньютона-Рафсона, метод Марквардта). Достоинства и недостатки методов. Скорость сходимости.
- •2.4). Записать приращение функции f(X)∈c2(En) в точке X через градиент и матрицу Гессе.
- •2.5). Какие направления дифференцируемой в точке xk функции f(X) называются направлениями убывания? Каков геометрический смысл направления убывания?
- •2.8). Описать алгоритм графического решения задачи линейного программирования.
- •2.1). В чем заключается классический метод минимизации функций? Для каких целей разработан классический метод минимизации функций? Какова практическая ограниченность применимости этого метода?
- •2.2). Зависит ли точность определения X*, которую получают методом парабол в результате n вычислений функции f(X), от конкретной функции f(X)?
- •2.3). Увеличение используемого значения константы Липшица l при реализации метода ломаных приводит к замедлению сходимости метода. Объяснить этот факт с помощью геометрической иллюстрации.
- •2.4). Что такое градиент и антиградиент функции многих переменных и каков их геометрический смысл? Что такое матрица Гессе функции многих переменных?
- •2.5). Когда говорят, что сильно выпуклая функция f(X) имеет “овражный характер”? Какие задачи минимизации называются хорошо обусловленными, а какие − плохо обусловленными?
- •2.8). Какая задача оптимизации называется задачей линейного программирования?
- •1.1). Унимодальна ли функция на отрезке [1,2]
- •1.2). Решить классическим методом минимизации на отрезке [-4,4]
- •1.3). Найти безусловные экстремумы функции на e2.
- •2.1). Унимодальна ли функция на отрезке [0,π/4]
- •2.2). Решить классическим методом минимизации на отрезке [1/2,3/2]
- •3.1). Унимодальна ли функция на отрезке [0,1]
- •3.2). Решить классическим методом минимизации на отрезке [π/3, 2π/3]
- •4.1). Привести примеры функций f(X), унимодальных на отрезке [a;b], но не выпуклых на нем
- •5.2). Найти минимальную константу Липшица . A). X∈[0;2] б). X∈[2;3].
- •5.4). Показать, что квадратичная функция сильно выпукла.
- •6.1). Найти максимальное b, при котором f(X) унимодальна.
- •6.2). Найти минимальную константу Липшица . A). X∈[0;1] б). X∈[0;10].
- •6.4). Показать, что квадратичная функция сильно выпукла.
- •8.4). При каких a,b,c квадратичная функция будет сильно выпукла?
2.1). Сформулировать условие Липшица для функции f(X) на отрезке [a,b]. Всякая ли унимодальная на отрезке [a,b] функция f(X) удовлетворяет на нем условию Липшица?
Функция
f(x)
удовлетворяет на отрезке [a,b]
условию Липшица, если существует такое
число L>0
(константа Липшица), что |f(x’)-f(x”)|≤L|x’-x”|
для всех x’
и x”,
принадлежащих [a,b].
|f(x’)-f(x”)|/|x’-x”|
≤L
отсюда видно, что модуль углового
коэффициента любой хорды не превышает
L,
а в пределе х’->x”
получим, что f’(x)
≤L,
т.е. ограниченность углового коэффициента
касательной. Однако есть унимодальные
ф-ции не удовлетворяющие этому, например
на [0,1] при х->+0 углов. коэф. касательной
неогр. возрастает удовлетворяет условию
Липшица.
2.2). Доказать, что в методе дихотомии число итераций, необходимое для определения точки минимума с точностью ε, определяется формулой .
Число итераций для заданной точности ε находим из условия εn≤ε.
Пусть
длина [a,b]=∆0.
Тогда длина отрезка после первой итерации
.
После
второй:
.
После третьей:
…
Длина
отрезка поиска точки min
x*:
При
этом
;
. ч.т.д.
2.3). Является ли условие достаточным для того, чтобы число было точкой минимума унимодальной, но не выпуклой функции f(X)? Ответ сопроводить примером.
- необходимое условие экстремума.
Пример:
,
f”(x)
не ≥ 0 на [-1;1]
унимодальная (по пределению), но не
выпуклая(т.к. не выполняется второй
дифференциальный критерий выпуклости).
При x=0 f’(x)=0, но x=0 – не точка минимума. Ответ: не достаточно.
2.4). Сформулировать необходимое условие второго порядка для безусловного экстремума функции многих переменных. Сформулировать критерий проверки необходимых условий экстремума второго порядка функции многих переменных (2 способа).
Необходимые условия экстремума второго порядка. Пусть x*∈En есть точка локального минимума (максимума) функции f(x), определенной на множестве En и функция f(x) дважды дифференцируема в этой точке. Тогда матрица Гессе H(x*) функции f(x), вычисленная в точке x*, является положительно (отрицательно) полуопределенной, т.е. H(x*)≥0, (H(x*)≤0).
Критерий проверки необходимых условий экстремума второго порядка
Первый способ:
Для того, чтобы матрица Гессе H(x*) была положительно полуопределенной (H(x*)≥0) и стационарная точка x* может быть являлась точкой локального минимума, необходимо и достаточно, чтобы все главные миноры определителя матрицы Гессе были неотрицательны (Δ1≥0, Δ2≥0, …, Δn≥0).
Для того, чтобы H(x*)≤0 и стационарная точка x* может быть являлась точкой локального максимума, необходимо и достаточно, чтобы все главные миноры четного порядка были неотрицательны, а все главные миноры нечетного порядка – неположительны (Δ1≤0, Δ2≥0, Δ3≤0,…, (-1)nΔn≥0).
Второй способ проверки условий экстремума связан с анализом собственных значений матрицы Гессе и применим только в случае, если эти значения удается вычислить.
Собственные значения λi, i=1…n матрицы H(x*) размера nxn находятся как корни характеристического уравнения (алгебраического уравнения n-й степени) .
Для того, чтобы H(x*)≥0 и точка x*-min необходимо и достаточно, чтобы
.
Для того, чтобы H(x*)≤0 и точка x*-max необходимо и достаточно, чтобы
.