
- •Двнз «Чернівецький індустріальний коледж» архітектура комп’ютерів
- •Чернівці,
- •1.Історія розвитку обчислювальної техніки
- •2. Поняття про архітектуру еом. Принцип функціонування еом
- •38. Процесор векторного комп'ютера.
- •47. Функції арифметико-логічного пристрою. Способи обробки даних в арифметико-логічному пристрої
- •63. Частково-асоціативне відображення
- •82. Універсальна послідовна шина usb
- •1.Історія розвитку обчислювальної техніки
- •Покоління процесорів x86
- •Поняття архітектури і структурної організації комп’ютера
- •2. Поняття про архітектуру еом. Принцип функціонування еом Структура й принципи функціонування еом
- •3. Склад і призначення основних блоків
- •4. Архітектурні принципи Джона фон Неймана. Ненейманівські архітектури комп'ютерів
- •5. Апаратні і програмні засоби. Класифікація еом
- •Стандартні додатки Windows
- •Службові програми
- •Методи класифікації комп'ютерів.
- •Класифікація за призначенням
- •Великі еом (Main Frame)
- •МікроЕом
- •Персональні комп'ютери
- •Класифікація по рівню спеціалізації
- •Класифікація за розміром
- •Класифікація за сумісністю
- •6. Основні характеристики еом. Пк, особливості, класифікація, основні характеристики Основні характеристики пк
- •7. Персональні комп'ютери
- •8. Робочі станції. Багатотермінальні системи. Сервери
- •9. Кластерні комп'ютерні системи.
- •10. Суперкомп'ютери. Мікроконтролери. Спеціалізовані комп'ютери
- •11. Позиційні системи числення. Двійкові, вісімкові та шістнадцяткові числа
- •Двійкові, вісімкові та шістнадцяткові числа
- •12. Переведення чисел із системи числення з основою k у десяткову систему
- •13. Переведення чисел із десяткової системи у систему числення з основою k.
- •14. Прямий код. Обернений код. Доповняльний код. Способи представлення чисел
- •15. Числа з фіксованою комою. Числа із рухомою комою
- •16. Арифметичні операції. Ділення двійкових чисел
- •17. Арифметичні операції над двійковими числами у форматі з рухомою комою
- •18. Стандарт іеее-754. Розширений двійково-кодований десятковий код обміну ebcdic
- •19. Кодування алфавітно-цифрової інформації. Двійково-кодовані десяткові числа.
- •20. Американський стандартний код інформаційного обміну ascii. Стандарт кодування символів Unicode.
- •21. Кодування та виконання команд в комп'ютері
- •22. Виконання команд на рівні регістрів процессора.
- •23. Конвеєрне виконання команд
- •24. Класифікація архітектури комп'ютера за типом адресованої пам'яті.
- •25. Безпосередня адресація. Пряма адресація. Непряма адресація.
- •26. Відносна адресація. Базова адресація. Індексна адресація.
- •27. Сторінкова адресація. Неявна адресація. Стекова адресація. Використання стекової адресації.
- •28. Одношинна структура процесора.
- •29. Основні операції процесора. Вибірка слова з пам'яті. Запам'ятовування слова в пам'яті. Обмін даними між регістрами.
- •30. Багатошинна структура процесора.
- •31. Приклади виконання операцій в процесорі. Виконання операції додавання двох чисел.
- •32. Вимоги до процесора комп'ютера з простою системою команд. Базові принципи побудови процесора комп'ютера з простою системою команд.
- •33. Взаємодія процесора з пам'яттю в комп'ютері з простою системою команд.
- •34. Виконання команд в процесорі комп'ютера з простою системою команд. Фаза вибирання команди. Фаза декодування команди.
- •35. Конвеєрний процессор.
- •36. Мікродії ярусів конвеєрного процесора.
- •37. Суперскалярні процесори.
- •38. Процесор векторного комп'ютера.
- •39. Класифікація архітектури комп'ютера за рівнем суміщення опрацювання команд та даних.
- •40. Логічні операції.
- •1. Формальна логіка
- •2. Математична логіка
- •3. Програмування
- •41. Операція заперечення. Логічна 1. Логічне або. Виключне або.
- •42. Операції зсуву.
- •43. Операції відношення.
- •44. Арифметичні операції.
- •45. Операції обчислення елементарних функцій.
- •46. Операції перетворення даних.
- •47. Функції арифметико-логічного пристрою. Способи обробки даних в арифметико-логічному пристрої.
- •48. Елементарні операції арифметико-логічного пристрою.
- •49. Складні операції арифметико-логічного пристрою.
- •50. Структура арифметико-логічного пристрою.
- •51. Функції та методи побудови пристрою керування.
- •52. Пристрій керування з жорсткою логікою.
- •53. Пристрій керування на основі таблиць станів.
- •54. Пристрій мікропрограмного керування.
- •55. Порівняння пристроїв керування з жорсткою логікою та пристроїв мікропрограмного керування.
- •56 Ієрархічна організація пам'яті комп'ютера
- •57. Принцип ієрархічної організації пам'яті. Характеристики ефективності ієрархічної організації пам'яті
- •58. Кеш пам'ять в складі комп'ютера. Порядок взаємодії процесора і основної пам'яті через кеш пам'ять
- •59. Забезпечення ідентичності вмісту блоків кеш пам'яті і основної пам'яті
- •60. Функція відображення. Типи функцій відображення
- •61. Повністю асоціативне відображення
- •62. Пряме відображення
- •63. Частково-асоціативне відображення
- •64. Порядок заміщення блоків в кеш пам'яті з асоціативним відображенням
- •65. Підвищення ефективності кеш пам'яті
- •66. Статичний та динамічний розподіл пам'яті. Розподіл основної пам'яті за допомогою базових адрес
- •67. Віртуальна пам'ять. Сторінкова організація пам'яті
- •68. Основні правила сторінкової організації пам'яті. Реалізація сторінкової організації пам'яті
- •69. Апаратна реалізація сторінкової таблиці
- •70. Сегментна організація віртуальної пам'яті
- •71. Захист пам'яті від несанкціонованих звернень
- •72. Захист пам'яті за значеннями ключів
- •73. Кільцева схема захисту пам'яті
- •74. Архітектура системної плати
- •75. Синхронізація
- •76. Система шин
- •77. Особливості роботи шини
- •78. Характеристики шин пк
- •79. Шина pcmcia, vbl
- •80. Шина pci
- •82. Універсальна послідовна шина usb
- •83.Типи передач і формати інформації що передається
- •84. Шина scsi
- •85. Адресація пристроїв і передача даних
- •86. Система команд
- •87. Конфігурування пристроїв scsi
- •88. Ігровий адаптер Game-порт
- •89. Відеоадаптери
- •90. Послідовний інтерфейс. Сом-порт
- •91. Програмна модель сом-порта
- •92. Програмування послідовного зв’язку
- •93. Ініціалізація послідовного порта. Передача і прийом даних
- •95. Паралельний інтерфейс lpt-порт. Стандартний режим spp
- •96. Режим epp
- •97. Режим ecp
- •98. Узгодження режимів
- •99. Приклад програмування
- •100. Клавіатура
- •101. Під'єднання зовнішніх пристроїв до комп'ютера
- •102. Розпізнавання пристроїв введення-виведення
- •103. Методи керування введенням-виведенням
- •104. Програмно-кероване введення-виведення.
- •105. Система переривання програм та організація введення-виведення за перериваннями
- •106. Прямий доступ до пам'яті. Введення-виведення під керуванням периферійних процесорів
- •107. Мультиплексний та селекторний канали введення-виведення
- •108. Використання принципів паралельної обробки інформації в архітектурі комп'ютера
- •109. Вибір кількості процесорів в багатопроцесорній системі
- •110. Багатопотокова обробка інформації. Окр
- •111. Класифікація Шора. Класифікація Фліна
- •112. Типи архітектур систем окмд. Типи архітектур систем мкмд
- •113.Організація комп'ютерних систем із спільною пам'яттю
- •114. Організація комп'ютерних систем із розподіленою пам'яттю
- •115. Комунікаційні мережі багатопроцесорних систем
112. Типи архітектур систем окмд. Типи архітектур систем мкмд
До комп’ютерних систем класу ОКМД належать різні типи систем, які під керуванням одиничного потоку команд обробляють потоки даних. В першу чергу до цих систем потрібно віднести векторні та матричні комп’ютерні системи. Перші з них були детально розглянуті раніше. Призначення матричних комп’ютерних систем багато в чому схоже з призначенням векторних комп’ютерних систем - обробка великих масивів даних. В основі матричних комп’ютерних систем лежить матричний процесор, що складається з регулярного масиву процесорних елементів (ПЕ). Організація систем подібного типу на перший погляд достатньо проста. Вони мають пристрій керування, що генерує потік команд і велике число ПЕ, що працюють паралельно і оброблюють кожен свій потік даних. Проте на практиці, щоб забезпечити достатню ефективність системи при вирішенні широкого кола завдань, необхідно організувати зв’язки між процесорними елементами так, щоб якнайповніше завантажити 'їх роботою. Саме характер зв’язків між ПЕ і визначає різницю у властивостях системи.
Між матричними і векторними комп’ютерними системами є істотна різниця.
В складі системи команд векторного процесора є команди обробки векторів даних, що дозволяє ефективно завантажити конвеєри його операційних блоків. Векторні процесори простіше використовувати, тому що команди для обробки векторів - це зручніша модель програмування, ніж команди для паралельно включених ПЕ.
Матричний процесор інтегрує безліч ідентичних процесорних елементів, логічно об’єднаних у матрицю і працюючих в стилі ОКМД. Не так істотно, як конструктивно реалізована матриця процесорних елементів - на одному кристалі чи на декількох. Важливий сам принцип - ПЕ логічно скомпоновані в матрицю і працюють синхронно, тобто присутній тільки один потік команд для всіх.
Є дві головні конфігурації, які були використані в матричних комп’ютерних системах класу ОКМД. В першій схемі кожен процесор Р має власну локальну пам’ять М (рис. 12.15).
Процесори можуть
зв’язатися один з одним через комунікаційну
мережу. Якщо комунікаційна мережа
не забезпечує прямого зв’язку між
заданою парою процесорів, то згодом ця
пара може обмінятися даними через
проміжний процесор. Таку схему зв’язку
було використано в комп’ютері ILLIAC IV.
Комунікаційна мережа в ILLIAC IV дозволяла
кожному процесору зв’язуватися
безпосередньо з чотирма сусідніми
процесорами. В ! матриці із 8x8 процесорів
кожний i-й процесор міг контактувати
безпосередньо з (і-1)-
У другій схемі
процесори і модулі пам’яті зв’язуються
між собою через комунікаційну мережу
(рис. 12.16). Два процесори можуть передати
дані один одному через проміжний модуль
пам’яті або, можливо, через проміжний
процесор. За такою схемою, наприклад,
побудовано процесор BSP фірми Burrough
Типи архітектур систем МКМД
Комп’ютерні системи класу МКМД складаються з багатьох процесорів та багатьох модулів пам’яті, з’єднаних за допомогою комунікаційної мережі. Вони можуть бути поділені на дві великі групи: зі спільною пам’яттю та з передачею повідомлень. На рис. 12.17 а та Ь показано загальну структуру цих двох груп комп’ютерних систем.
В першій групі процесори обмінюються інформацією через їх спільну пам’ять, причому кожний процесор має рівні можливості читати та записувати дані до пам’яті, а також однакову швидкість доступу до пам’яті, тому їх часто називають симетричними багатопроцесорними системами. Комерційними прикладами комп’ютерних систем першої групи є багатопроцесорні сервери фірм Sequent Computer’s Balance and Symmetry, Sun Microsystems та Silicon Graphics Inc.
У другій групі процесори обмінюються інформацією через комунікаційну мережу. В комп’ютерній системі з передачею повідомлень (також 'їх називають системами з розподіленою пам’яттю) зазвичай наявна локальна пам’ять і процесор у кожному вузлі комунікаційної мережі. Тут відсутня спільна пам’ять, тому необхідно переміщувати дані з однієї локальної пам’яті до іншої за допомогою механізму передачі повідомлень. Це, зазвичай, робиться шляхом посилання-отримання кількох команд, які повинні бути вписані в прикладне програмне забезпечення. Комерційними прикладами систем передачі повідомлень є системи nCUBE, iPSC/2 і різні системи, базовані на трансп’ютерах. Ці системи кінець кінцем поступилися системам глобальної мережі Internet, в якій вузли є або серверами, або персональними комп’ютерами.
Архітектуру з розподіленою пам’яттю довелося використовувати із-за переходу до все більших систем. Потрібно відзначити, що програмування в системі зі спільною пам’яттю є простішим, а в системах передачі повідомлень забезпечується масштабова- ність. Тому з’явились комбіновані системи з розподіленою та з спільною пам’яттю, такі як SGI 0rigin2000, та інші.