
- •Двнз «Чернівецький індустріальний коледж» архітектура комп’ютерів
- •Чернівці,
- •1.Історія розвитку обчислювальної техніки
- •2. Поняття про архітектуру еом. Принцип функціонування еом
- •38. Процесор векторного комп'ютера.
- •47. Функції арифметико-логічного пристрою. Способи обробки даних в арифметико-логічному пристрої
- •63. Частково-асоціативне відображення
- •82. Універсальна послідовна шина usb
- •1.Історія розвитку обчислювальної техніки
- •Покоління процесорів x86
- •Поняття архітектури і структурної організації комп’ютера
- •2. Поняття про архітектуру еом. Принцип функціонування еом Структура й принципи функціонування еом
- •3. Склад і призначення основних блоків
- •4. Архітектурні принципи Джона фон Неймана. Ненейманівські архітектури комп'ютерів
- •5. Апаратні і програмні засоби. Класифікація еом
- •Стандартні додатки Windows
- •Службові програми
- •Методи класифікації комп'ютерів.
- •Класифікація за призначенням
- •Великі еом (Main Frame)
- •МікроЕом
- •Персональні комп'ютери
- •Класифікація по рівню спеціалізації
- •Класифікація за розміром
- •Класифікація за сумісністю
- •6. Основні характеристики еом. Пк, особливості, класифікація, основні характеристики Основні характеристики пк
- •7. Персональні комп'ютери
- •8. Робочі станції. Багатотермінальні системи. Сервери
- •9. Кластерні комп'ютерні системи.
- •10. Суперкомп'ютери. Мікроконтролери. Спеціалізовані комп'ютери
- •11. Позиційні системи числення. Двійкові, вісімкові та шістнадцяткові числа
- •Двійкові, вісімкові та шістнадцяткові числа
- •12. Переведення чисел із системи числення з основою k у десяткову систему
- •13. Переведення чисел із десяткової системи у систему числення з основою k.
- •14. Прямий код. Обернений код. Доповняльний код. Способи представлення чисел
- •15. Числа з фіксованою комою. Числа із рухомою комою
- •16. Арифметичні операції. Ділення двійкових чисел
- •17. Арифметичні операції над двійковими числами у форматі з рухомою комою
- •18. Стандарт іеее-754. Розширений двійково-кодований десятковий код обміну ebcdic
- •19. Кодування алфавітно-цифрової інформації. Двійково-кодовані десяткові числа.
- •20. Американський стандартний код інформаційного обміну ascii. Стандарт кодування символів Unicode.
- •21. Кодування та виконання команд в комп'ютері
- •22. Виконання команд на рівні регістрів процессора.
- •23. Конвеєрне виконання команд
- •24. Класифікація архітектури комп'ютера за типом адресованої пам'яті.
- •25. Безпосередня адресація. Пряма адресація. Непряма адресація.
- •26. Відносна адресація. Базова адресація. Індексна адресація.
- •27. Сторінкова адресація. Неявна адресація. Стекова адресація. Використання стекової адресації.
- •28. Одношинна структура процесора.
- •29. Основні операції процесора. Вибірка слова з пам'яті. Запам'ятовування слова в пам'яті. Обмін даними між регістрами.
- •30. Багатошинна структура процесора.
- •31. Приклади виконання операцій в процесорі. Виконання операції додавання двох чисел.
- •32. Вимоги до процесора комп'ютера з простою системою команд. Базові принципи побудови процесора комп'ютера з простою системою команд.
- •33. Взаємодія процесора з пам'яттю в комп'ютері з простою системою команд.
- •34. Виконання команд в процесорі комп'ютера з простою системою команд. Фаза вибирання команди. Фаза декодування команди.
- •35. Конвеєрний процессор.
- •36. Мікродії ярусів конвеєрного процесора.
- •37. Суперскалярні процесори.
- •38. Процесор векторного комп'ютера.
- •39. Класифікація архітектури комп'ютера за рівнем суміщення опрацювання команд та даних.
- •40. Логічні операції.
- •1. Формальна логіка
- •2. Математична логіка
- •3. Програмування
- •41. Операція заперечення. Логічна 1. Логічне або. Виключне або.
- •42. Операції зсуву.
- •43. Операції відношення.
- •44. Арифметичні операції.
- •45. Операції обчислення елементарних функцій.
- •46. Операції перетворення даних.
- •47. Функції арифметико-логічного пристрою. Способи обробки даних в арифметико-логічному пристрої.
- •48. Елементарні операції арифметико-логічного пристрою.
- •49. Складні операції арифметико-логічного пристрою.
- •50. Структура арифметико-логічного пристрою.
- •51. Функції та методи побудови пристрою керування.
- •52. Пристрій керування з жорсткою логікою.
- •53. Пристрій керування на основі таблиць станів.
- •54. Пристрій мікропрограмного керування.
- •55. Порівняння пристроїв керування з жорсткою логікою та пристроїв мікропрограмного керування.
- •56 Ієрархічна організація пам'яті комп'ютера
- •57. Принцип ієрархічної організації пам'яті. Характеристики ефективності ієрархічної організації пам'яті
- •58. Кеш пам'ять в складі комп'ютера. Порядок взаємодії процесора і основної пам'яті через кеш пам'ять
- •59. Забезпечення ідентичності вмісту блоків кеш пам'яті і основної пам'яті
- •60. Функція відображення. Типи функцій відображення
- •61. Повністю асоціативне відображення
- •62. Пряме відображення
- •63. Частково-асоціативне відображення
- •64. Порядок заміщення блоків в кеш пам'яті з асоціативним відображенням
- •65. Підвищення ефективності кеш пам'яті
- •66. Статичний та динамічний розподіл пам'яті. Розподіл основної пам'яті за допомогою базових адрес
- •67. Віртуальна пам'ять. Сторінкова організація пам'яті
- •68. Основні правила сторінкової організації пам'яті. Реалізація сторінкової організації пам'яті
- •69. Апаратна реалізація сторінкової таблиці
- •70. Сегментна організація віртуальної пам'яті
- •71. Захист пам'яті від несанкціонованих звернень
- •72. Захист пам'яті за значеннями ключів
- •73. Кільцева схема захисту пам'яті
- •74. Архітектура системної плати
- •75. Синхронізація
- •76. Система шин
- •77. Особливості роботи шини
- •78. Характеристики шин пк
- •79. Шина pcmcia, vbl
- •80. Шина pci
- •82. Універсальна послідовна шина usb
- •83.Типи передач і формати інформації що передається
- •84. Шина scsi
- •85. Адресація пристроїв і передача даних
- •86. Система команд
- •87. Конфігурування пристроїв scsi
- •88. Ігровий адаптер Game-порт
- •89. Відеоадаптери
- •90. Послідовний інтерфейс. Сом-порт
- •91. Програмна модель сом-порта
- •92. Програмування послідовного зв’язку
- •93. Ініціалізація послідовного порта. Передача і прийом даних
- •95. Паралельний інтерфейс lpt-порт. Стандартний режим spp
- •96. Режим epp
- •97. Режим ecp
- •98. Узгодження режимів
- •99. Приклад програмування
- •100. Клавіатура
- •101. Під'єднання зовнішніх пристроїв до комп'ютера
- •102. Розпізнавання пристроїв введення-виведення
- •103. Методи керування введенням-виведенням
- •104. Програмно-кероване введення-виведення.
- •105. Система переривання програм та організація введення-виведення за перериваннями
- •106. Прямий доступ до пам'яті. Введення-виведення під керуванням периферійних процесорів
- •107. Мультиплексний та селекторний канали введення-виведення
- •108. Використання принципів паралельної обробки інформації в архітектурі комп'ютера
- •109. Вибір кількості процесорів в багатопроцесорній системі
- •110. Багатопотокова обробка інформації. Окр
- •111. Класифікація Шора. Класифікація Фліна
- •112. Типи архітектур систем окмд. Типи архітектур систем мкмд
- •113.Організація комп'ютерних систем із спільною пам'яттю
- •114. Організація комп'ютерних систем із розподіленою пам'яттю
- •115. Комунікаційні мережі багатопроцесорних систем
90. Послідовний інтерфейс. Сом-порт
При послідовної зв'язку (Serial Interface і Serial Port) ПК посилає або приймає байти інформації побітно, тому для передачі даних в одну сторону використовується одна сигнальна лінія. Послідовна передача даних може здійснюватися як в асинхронному, так і в синхронному режимах.
При асинхронної передачі біти передаються синхронно, а байти асинхронно (старт - стопного передача). Сигнал на лінії може бути високого або низького рівня, що відповідає логічному нулю або одиниці, і кажуть, що лінія відзначена (marking), коли рівень високий, і порожня (spacing), коли рівень низький.
Лінія підтримується в зазначеному стані, коли по ній немає передачі даних. При початку передачі байта даних сигнал падає в О, відзначаючи стартовий біт. Потім слідують вісім бітів даних (іноді менше) у вигляді набору високих і низьких рівнів. Останній біт даних може супроводжуватися бітом парності, використовуваним для виявлення помилок, а потім у послідовність включаються 1 або більше стоп-бітів, яким відповідає високий рівень. Ці стоп-біти починають зазначене стан, який буде зберігатися доти, поки не почнеться передача наступного байта даних; число використовуваних стоп-бітів істотно, оскільки вони встановлюють мінімальний час, який має пройти перед наступним стартовим бітом. На рис. 3.1 показана ця послідовність.
Звичайно, передає і приймальня станції повинні використовувати один і той же протокол для цих ланцюжків бітів і вони повинні працювати з однією і тією ж швидкістю обміну (вимірюваної в бітах в секунду). Для асинхронного режиму прийнятий ряд стандартних швидкостей обміну: 50, 75, 110, 150, 300, 600 1200, 2400, 4800, 9600, 19200, 38400, 57600 і 115200 біт / с. Внутрішній генератор синхронізації приймача використовує лічильник-дільник опорної частоти, обнуляє в момент прийому початку старт-біта. Цей лічильник генерує внутрішні строби, за якими приймач фіксує наступні прийняті біти. В ідеалі ці строби розташовуються в середині бітових інтервалів, що забезпечує можливість прийому даних і при деякому неузгодженості швидкостей приймача і передавача. Неважко помітити, що при передачі 8 біт даних, одного контрольного і одного стоп-біта гранично допустиме неузгодженість швидкостей, при якому дані будуть розпізнані вірно, не може перевищувати 5%. З урахуванням фазових спотворень (затягнутих фронтів сигналу) і дискретності роботи внутрішнього лічильника синхронізації реально допустимо менше відхилення частот. При обміні можуть легко виникати помилки, тому комунікаційне обладнання надає різноманітну інформацію про статус як самого порту, так і приєднаної до нього модему. Завданням модему є перетворення сигналу, що генерується портом комунікації, в акустичний сигнал, який може потім бути переданий по телефонному каналу. Більшість модемів надають також додаткові комунікаційні можливості, такі як автоматичний виклик і відповідь, які не підтримуються самим портом комунікації.
Асинхронний обмін в PC реалізується за допомогою COM-порту з використанням протоколу RS-232C.
Синхронний режим передачі передбачає постійну активність каналу зв'язку. Здійснення починається з сінхробайта, за яких впритул слід потік інформаційних біт. Якщо у передавача немає даних для передачі, він заповнює паузу посилкою байтів синхронізації безперервної. Очевидно, що при передачі великих масивів даних накладні витрати на синхронізацію в даному режимі обміну будуть нижчими, ніж в асинхронному. Однак у синхронному режимі необхідна зовнішня синхронізація приймача з передавачем, оскільки навіть мале відхилення частот призведе до швидко накопичується помилку і спотворення отриманих даних. Зовнішня синхронізація можлива або за допомогою окремої лінії для передачі сигналу синхронізації, або з використанням самосінхронізірующіхся кодування даних (наприклад, манчестерський код або NRZ), при якому на приймальній стороні з прийнятого сигналу можуть бути виділені і імпульси синхронізації. У будь-якому випадку синхронний режим вимагає або дорогах ліній зв'язку, або дорогого обладнання (а може, і того й іншого). Для ПК IBM PC існують спеціальні плати - адаптери SDLC (досить дорогі), що підтримують синхронний режим обміну. Вони використовуються в основному для зв'язку з великими машинами (mainframes) ЮМ і в даний час мало поширені.