
- •Двнз «Чернівецький індустріальний коледж» архітектура комп’ютерів
- •Чернівці,
- •1.Історія розвитку обчислювальної техніки
- •2. Поняття про архітектуру еом. Принцип функціонування еом
- •38. Процесор векторного комп'ютера.
- •47. Функції арифметико-логічного пристрою. Способи обробки даних в арифметико-логічному пристрої
- •63. Частково-асоціативне відображення
- •82. Універсальна послідовна шина usb
- •1.Історія розвитку обчислювальної техніки
- •Покоління процесорів x86
- •Поняття архітектури і структурної організації комп’ютера
- •2. Поняття про архітектуру еом. Принцип функціонування еом Структура й принципи функціонування еом
- •3. Склад і призначення основних блоків
- •4. Архітектурні принципи Джона фон Неймана. Ненейманівські архітектури комп'ютерів
- •5. Апаратні і програмні засоби. Класифікація еом
- •Стандартні додатки Windows
- •Службові програми
- •Методи класифікації комп'ютерів.
- •Класифікація за призначенням
- •Великі еом (Main Frame)
- •МікроЕом
- •Персональні комп'ютери
- •Класифікація по рівню спеціалізації
- •Класифікація за розміром
- •Класифікація за сумісністю
- •6. Основні характеристики еом. Пк, особливості, класифікація, основні характеристики Основні характеристики пк
- •7. Персональні комп'ютери
- •8. Робочі станції. Багатотермінальні системи. Сервери
- •9. Кластерні комп'ютерні системи.
- •10. Суперкомп'ютери. Мікроконтролери. Спеціалізовані комп'ютери
- •11. Позиційні системи числення. Двійкові, вісімкові та шістнадцяткові числа
- •Двійкові, вісімкові та шістнадцяткові числа
- •12. Переведення чисел із системи числення з основою k у десяткову систему
- •13. Переведення чисел із десяткової системи у систему числення з основою k.
- •14. Прямий код. Обернений код. Доповняльний код. Способи представлення чисел
- •15. Числа з фіксованою комою. Числа із рухомою комою
- •16. Арифметичні операції. Ділення двійкових чисел
- •17. Арифметичні операції над двійковими числами у форматі з рухомою комою
- •18. Стандарт іеее-754. Розширений двійково-кодований десятковий код обміну ebcdic
- •19. Кодування алфавітно-цифрової інформації. Двійково-кодовані десяткові числа.
- •20. Американський стандартний код інформаційного обміну ascii. Стандарт кодування символів Unicode.
- •21. Кодування та виконання команд в комп'ютері
- •22. Виконання команд на рівні регістрів процессора.
- •23. Конвеєрне виконання команд
- •24. Класифікація архітектури комп'ютера за типом адресованої пам'яті.
- •25. Безпосередня адресація. Пряма адресація. Непряма адресація.
- •26. Відносна адресація. Базова адресація. Індексна адресація.
- •27. Сторінкова адресація. Неявна адресація. Стекова адресація. Використання стекової адресації.
- •28. Одношинна структура процесора.
- •29. Основні операції процесора. Вибірка слова з пам'яті. Запам'ятовування слова в пам'яті. Обмін даними між регістрами.
- •30. Багатошинна структура процесора.
- •31. Приклади виконання операцій в процесорі. Виконання операції додавання двох чисел.
- •32. Вимоги до процесора комп'ютера з простою системою команд. Базові принципи побудови процесора комп'ютера з простою системою команд.
- •33. Взаємодія процесора з пам'яттю в комп'ютері з простою системою команд.
- •34. Виконання команд в процесорі комп'ютера з простою системою команд. Фаза вибирання команди. Фаза декодування команди.
- •35. Конвеєрний процессор.
- •36. Мікродії ярусів конвеєрного процесора.
- •37. Суперскалярні процесори.
- •38. Процесор векторного комп'ютера.
- •39. Класифікація архітектури комп'ютера за рівнем суміщення опрацювання команд та даних.
- •40. Логічні операції.
- •1. Формальна логіка
- •2. Математична логіка
- •3. Програмування
- •41. Операція заперечення. Логічна 1. Логічне або. Виключне або.
- •42. Операції зсуву.
- •43. Операції відношення.
- •44. Арифметичні операції.
- •45. Операції обчислення елементарних функцій.
- •46. Операції перетворення даних.
- •47. Функції арифметико-логічного пристрою. Способи обробки даних в арифметико-логічному пристрої.
- •48. Елементарні операції арифметико-логічного пристрою.
- •49. Складні операції арифметико-логічного пристрою.
- •50. Структура арифметико-логічного пристрою.
- •51. Функції та методи побудови пристрою керування.
- •52. Пристрій керування з жорсткою логікою.
- •53. Пристрій керування на основі таблиць станів.
- •54. Пристрій мікропрограмного керування.
- •55. Порівняння пристроїв керування з жорсткою логікою та пристроїв мікропрограмного керування.
- •56 Ієрархічна організація пам'яті комп'ютера
- •57. Принцип ієрархічної організації пам'яті. Характеристики ефективності ієрархічної організації пам'яті
- •58. Кеш пам'ять в складі комп'ютера. Порядок взаємодії процесора і основної пам'яті через кеш пам'ять
- •59. Забезпечення ідентичності вмісту блоків кеш пам'яті і основної пам'яті
- •60. Функція відображення. Типи функцій відображення
- •61. Повністю асоціативне відображення
- •62. Пряме відображення
- •63. Частково-асоціативне відображення
- •64. Порядок заміщення блоків в кеш пам'яті з асоціативним відображенням
- •65. Підвищення ефективності кеш пам'яті
- •66. Статичний та динамічний розподіл пам'яті. Розподіл основної пам'яті за допомогою базових адрес
- •67. Віртуальна пам'ять. Сторінкова організація пам'яті
- •68. Основні правила сторінкової організації пам'яті. Реалізація сторінкової організації пам'яті
- •69. Апаратна реалізація сторінкової таблиці
- •70. Сегментна організація віртуальної пам'яті
- •71. Захист пам'яті від несанкціонованих звернень
- •72. Захист пам'яті за значеннями ключів
- •73. Кільцева схема захисту пам'яті
- •74. Архітектура системної плати
- •75. Синхронізація
- •76. Система шин
- •77. Особливості роботи шини
- •78. Характеристики шин пк
- •79. Шина pcmcia, vbl
- •80. Шина pci
- •82. Універсальна послідовна шина usb
- •83.Типи передач і формати інформації що передається
- •84. Шина scsi
- •85. Адресація пристроїв і передача даних
- •86. Система команд
- •87. Конфігурування пристроїв scsi
- •88. Ігровий адаптер Game-порт
- •89. Відеоадаптери
- •90. Послідовний інтерфейс. Сом-порт
- •91. Програмна модель сом-порта
- •92. Програмування послідовного зв’язку
- •93. Ініціалізація послідовного порта. Передача і прийом даних
- •95. Паралельний інтерфейс lpt-порт. Стандартний режим spp
- •96. Режим epp
- •97. Режим ecp
- •98. Узгодження режимів
- •99. Приклад програмування
- •100. Клавіатура
- •101. Під'єднання зовнішніх пристроїв до комп'ютера
- •102. Розпізнавання пристроїв введення-виведення
- •103. Методи керування введенням-виведенням
- •104. Програмно-кероване введення-виведення.
- •105. Система переривання програм та організація введення-виведення за перериваннями
- •106. Прямий доступ до пам'яті. Введення-виведення під керуванням периферійних процесорів
- •107. Мультиплексний та селекторний канали введення-виведення
- •108. Використання принципів паралельної обробки інформації в архітектурі комп'ютера
- •109. Вибір кількості процесорів в багатопроцесорній системі
- •110. Багатопотокова обробка інформації. Окр
- •111. Класифікація Шора. Класифікація Фліна
- •112. Типи архітектур систем окмд. Типи архітектур систем мкмд
- •113.Організація комп'ютерних систем із спільною пам'яттю
- •114. Організація комп'ютерних систем із розподіленою пам'яттю
- •115. Комунікаційні мережі багатопроцесорних систем
70. Сегментна організація віртуальної пам'яті
Зазвичай програма складається з декількох частин, розміри яких наперед невідомі та можуть змінюватись в процесі виконання програми. Для кожної з цих частин повинна бути відведена область в просторі віртуальних адрес, оскільки користуватися віртуальною пам яттю з неперервною нумерацією байтів всіх частин не завжди зручно. Більш зручно, коли кожна частина має свою нумерацію байтів починаючи з нуля. Бажано також, щоб складена таким чином програма могла працювати при динамічному розподілі пам яті, не вимагаючи від програміста зусиль по об єднанню різних її частин в єдиний масив. Це завдання розв’язується в багатьох комп’ютерах шляхом використання особливого методу перетворення віртуальних адрес в фізичні та називається сегментною організацією пам’яті.
Принципи сегментної організації пам’яті є наступними:
віртуальна пам’ять кожної програми ділиться на частини, що називаються сегментами*
всередині сегменту адресація байтів є незалежною, починаючи від нуля до якогось максимального значення;
різні сегменти можуть мати різну довжину;
довжина сегмента може змінюватись в процесі роботи;
так як кожний сегмент займає незалежний адресний простір, сегменти можуть рости і скорочуватися незалежно один від одного.
Як приклад на рис. 10.30 наведено сегменти пам яті деякої програми.
Щоб виконати звернення до такої сегментованої, або двовимірної пам’яті, програма повинна видати адресу, яка складається з двох частин: номера сегмента і внутрішньої адреси сегмента. Тобто до віртуальної адреси необхідно додати додаткові розряди лівіше номера сторінки, які визначають номер сегмента.
Крім спрощення обробки змінних за об’ємом структур даних, сегментована пам’ять значно спрощує зв’язок процедур, компіляція яких виконана окремо. Якщо процедура в деякому сегменті зазнала змін і повторної компіляції, то решта процедур змінювати не потрібно. Сегментація спрощує і спільне використання даних локальними процесами.
Так як з точки зору програміста сегменти є самостійними логічними об’єктами, припустимо застосування для них різних видів захисту: дозволяється лише читання, запис і т. п.
Таким чином виникає певна ієрархія в організації програм, яка складається з чотирьох ярусів: програма, сегмент, сторінка, слово. Цій ієрархії програм відповідає й ієрархія таблиць перетворення віртуальних адрес у фізичні, як це показано на рис. 10.31.
Хоча в логічному відношенні сегментна і сторінкова організація пам’яті тісно пов’язані між собою та подібні в реалізації, цілі їх застосування різні. Порівняння сегментної і сторінкової організації пам’яті наведено в табл. 10.1.
Таблиця
10.1
№ п/п
Характеристика
Сторінкова
організація пам’яті
Сегментна
організація пам’яті
1.
Чи
повинен програміст знати, який вид
організації пам’яті використовується?
ні
так
2.
Скільки
є лінійних адресних просторів?
1
багато
3.
Чи
може адресний простір перевищувати
ємність пам’яті?
так
так
4.
Чи
можуть бути розпізнані та окремо
захищені процедури і дані?
ні
так
5.
Чи
можна розміщувати таблиці змінного
об’єму?
ні
так
б.
Чи
можливе спільне застосування процедур
декількома користувачами?
ні
так
7.
Для
чого була розроблена дана організація
пам’яті?
Для
отримання великого адресного простору
без необхідності збільшення
фізичної пам’яті
Для
отримання можливості розміщувати
програми і дані в логічно незв’язаних
адресних просторах і для полегшення
сумісного використання і захисту
інформації
Віртуальна
адреса
Рис. 10.32. Перетворення
віртуальної адреси у фізичну адресу
при використанні сегментної
та сторінкової
організації пам'яті
Як видно з рисунка, для виконання перетворення необхідно два додаткових звернення до пам’яті. Для скорочення кількості звернень для побудови сегментної таблиці може бути застосована, як і при сторінковій організації пам’яті, асоціативна пам’ять.