
- •Двнз «Чернівецький індустріальний коледж» архітектура комп’ютерів
- •Чернівці,
- •1.Історія розвитку обчислювальної техніки
- •2. Поняття про архітектуру еом. Принцип функціонування еом
- •38. Процесор векторного комп'ютера.
- •47. Функції арифметико-логічного пристрою. Способи обробки даних в арифметико-логічному пристрої
- •63. Частково-асоціативне відображення
- •82. Універсальна послідовна шина usb
- •1.Історія розвитку обчислювальної техніки
- •Покоління процесорів x86
- •Поняття архітектури і структурної організації комп’ютера
- •2. Поняття про архітектуру еом. Принцип функціонування еом Структура й принципи функціонування еом
- •3. Склад і призначення основних блоків
- •4. Архітектурні принципи Джона фон Неймана. Ненейманівські архітектури комп'ютерів
- •5. Апаратні і програмні засоби. Класифікація еом
- •Стандартні додатки Windows
- •Службові програми
- •Методи класифікації комп'ютерів.
- •Класифікація за призначенням
- •Великі еом (Main Frame)
- •МікроЕом
- •Персональні комп'ютери
- •Класифікація по рівню спеціалізації
- •Класифікація за розміром
- •Класифікація за сумісністю
- •6. Основні характеристики еом. Пк, особливості, класифікація, основні характеристики Основні характеристики пк
- •7. Персональні комп'ютери
- •8. Робочі станції. Багатотермінальні системи. Сервери
- •9. Кластерні комп'ютерні системи.
- •10. Суперкомп'ютери. Мікроконтролери. Спеціалізовані комп'ютери
- •11. Позиційні системи числення. Двійкові, вісімкові та шістнадцяткові числа
- •Двійкові, вісімкові та шістнадцяткові числа
- •12. Переведення чисел із системи числення з основою k у десяткову систему
- •13. Переведення чисел із десяткової системи у систему числення з основою k.
- •14. Прямий код. Обернений код. Доповняльний код. Способи представлення чисел
- •15. Числа з фіксованою комою. Числа із рухомою комою
- •16. Арифметичні операції. Ділення двійкових чисел
- •17. Арифметичні операції над двійковими числами у форматі з рухомою комою
- •18. Стандарт іеее-754. Розширений двійково-кодований десятковий код обміну ebcdic
- •19. Кодування алфавітно-цифрової інформації. Двійково-кодовані десяткові числа.
- •20. Американський стандартний код інформаційного обміну ascii. Стандарт кодування символів Unicode.
- •21. Кодування та виконання команд в комп'ютері
- •22. Виконання команд на рівні регістрів процессора.
- •23. Конвеєрне виконання команд
- •24. Класифікація архітектури комп'ютера за типом адресованої пам'яті.
- •25. Безпосередня адресація. Пряма адресація. Непряма адресація.
- •26. Відносна адресація. Базова адресація. Індексна адресація.
- •27. Сторінкова адресація. Неявна адресація. Стекова адресація. Використання стекової адресації.
- •28. Одношинна структура процесора.
- •29. Основні операції процесора. Вибірка слова з пам'яті. Запам'ятовування слова в пам'яті. Обмін даними між регістрами.
- •30. Багатошинна структура процесора.
- •31. Приклади виконання операцій в процесорі. Виконання операції додавання двох чисел.
- •32. Вимоги до процесора комп'ютера з простою системою команд. Базові принципи побудови процесора комп'ютера з простою системою команд.
- •33. Взаємодія процесора з пам'яттю в комп'ютері з простою системою команд.
- •34. Виконання команд в процесорі комп'ютера з простою системою команд. Фаза вибирання команди. Фаза декодування команди.
- •35. Конвеєрний процессор.
- •36. Мікродії ярусів конвеєрного процесора.
- •37. Суперскалярні процесори.
- •38. Процесор векторного комп'ютера.
- •39. Класифікація архітектури комп'ютера за рівнем суміщення опрацювання команд та даних.
- •40. Логічні операції.
- •1. Формальна логіка
- •2. Математична логіка
- •3. Програмування
- •41. Операція заперечення. Логічна 1. Логічне або. Виключне або.
- •42. Операції зсуву.
- •43. Операції відношення.
- •44. Арифметичні операції.
- •45. Операції обчислення елементарних функцій.
- •46. Операції перетворення даних.
- •47. Функції арифметико-логічного пристрою. Способи обробки даних в арифметико-логічному пристрої.
- •48. Елементарні операції арифметико-логічного пристрою.
- •49. Складні операції арифметико-логічного пристрою.
- •50. Структура арифметико-логічного пристрою.
- •51. Функції та методи побудови пристрою керування.
- •52. Пристрій керування з жорсткою логікою.
- •53. Пристрій керування на основі таблиць станів.
- •54. Пристрій мікропрограмного керування.
- •55. Порівняння пристроїв керування з жорсткою логікою та пристроїв мікропрограмного керування.
- •56 Ієрархічна організація пам'яті комп'ютера
- •57. Принцип ієрархічної організації пам'яті. Характеристики ефективності ієрархічної організації пам'яті
- •58. Кеш пам'ять в складі комп'ютера. Порядок взаємодії процесора і основної пам'яті через кеш пам'ять
- •59. Забезпечення ідентичності вмісту блоків кеш пам'яті і основної пам'яті
- •60. Функція відображення. Типи функцій відображення
- •61. Повністю асоціативне відображення
- •62. Пряме відображення
- •63. Частково-асоціативне відображення
- •64. Порядок заміщення блоків в кеш пам'яті з асоціативним відображенням
- •65. Підвищення ефективності кеш пам'яті
- •66. Статичний та динамічний розподіл пам'яті. Розподіл основної пам'яті за допомогою базових адрес
- •67. Віртуальна пам'ять. Сторінкова організація пам'яті
- •68. Основні правила сторінкової організації пам'яті. Реалізація сторінкової організації пам'яті
- •69. Апаратна реалізація сторінкової таблиці
- •70. Сегментна організація віртуальної пам'яті
- •71. Захист пам'яті від несанкціонованих звернень
- •72. Захист пам'яті за значеннями ключів
- •73. Кільцева схема захисту пам'яті
- •74. Архітектура системної плати
- •75. Синхронізація
- •76. Система шин
- •77. Особливості роботи шини
- •78. Характеристики шин пк
- •79. Шина pcmcia, vbl
- •80. Шина pci
- •82. Універсальна послідовна шина usb
- •83.Типи передач і формати інформації що передається
- •84. Шина scsi
- •85. Адресація пристроїв і передача даних
- •86. Система команд
- •87. Конфігурування пристроїв scsi
- •88. Ігровий адаптер Game-порт
- •89. Відеоадаптери
- •90. Послідовний інтерфейс. Сом-порт
- •91. Програмна модель сом-порта
- •92. Програмування послідовного зв’язку
- •93. Ініціалізація послідовного порта. Передача і прийом даних
- •95. Паралельний інтерфейс lpt-порт. Стандартний режим spp
- •96. Режим epp
- •97. Режим ecp
- •98. Узгодження режимів
- •99. Приклад програмування
- •100. Клавіатура
- •101. Під'єднання зовнішніх пристроїв до комп'ютера
- •102. Розпізнавання пристроїв введення-виведення
- •103. Методи керування введенням-виведенням
- •104. Програмно-кероване введення-виведення.
- •105. Система переривання програм та організація введення-виведення за перериваннями
- •106. Прямий доступ до пам'яті. Введення-виведення під керуванням периферійних процесорів
- •107. Мультиплексний та селекторний канали введення-виведення
- •108. Використання принципів паралельної обробки інформації в архітектурі комп'ютера
- •109. Вибір кількості процесорів в багатопроцесорній системі
- •110. Багатопотокова обробка інформації. Окр
- •111. Класифікація Шора. Класифікація Фліна
- •112. Типи архітектур систем окмд. Типи архітектур систем мкмд
- •113.Організація комп'ютерних систем із спільною пам'яттю
- •114. Організація комп'ютерних систем із розподіленою пам'яттю
- •115. Комунікаційні мережі багатопроцесорних систем
Покоління процесорів x86
Сімейство x86 нараховує 7 поколінь процесорів:
Перше покоління (процесори 8086, 8080 і математичний сопроцесор 8087) заклало архітектурну основу – набір нерівноправних 16-розрядних регістрів, сегментну систему адресації пам’яті у межах 1Мбайт з великим різноманіттям режимів, систему команд, систему переривань та ін. В процесорах застосовувалась „мала” конвеєризація – поки одні вузли виконували поточну інструкцію, блок попередньої вибірки вибирав з пам’яті наступну. На виконання інструкції було потрібно в середньому 12 тактів процесорного ядра.
Друге покоління (80286 із сопроцесором 80287) принесло захищений режим, що дозволяє задіяти віртуальну пам’ять розміром до 1Гбайт для кожної задачі, користуючись адресованою фізичною пам’яттю у межах 16Мбайт. Захищений режим є основою для побудови багатозадачних операційних систем, в яких жорстко регламентуються взаємовідношення задач з пам’яттю. На виконання інструкції – в середньому 4,5 тактів.
Третє покоління (386/387 DX і SX) – перехід до 32-розрядної архітектури IA-32. Збільшився об’єм адресованої пам’яті (до 4Гбайт реальної, 64Тбайт віртуальної). В систему команд введено можливість переключення розрядності адресації і даних. На виконання інструкції – ті самі 4,5 тактів, але тактова частота досягла 40МГц.
Четверте покоління (486 DX і SX) у видиму архітектурну модель великих змін не внесло, але було прийнято ряд заходів для збільшення продуктивності. Значно ускладнений виконавчий конвеєр – основні операції виконує RISC-ядро, „завдання” для якого готуються з вхідних CISC-інструкцій. На виконання інструкції – в середньому 2 такти. Введено швидкодіючий первинний кеш об’ємом 8-16 Кбайт. Відмовились від зовнішнього математичного сопроцесора: тепер він розміщується на одному кристалі з центральним (FPU – Floating-Point Unit), або відсутній взагалі. Тактова частота досягла 100МГц (Intel) і 133МГц (AMD).
П’яте покоління (Intel Pentium, AMD K5) привнесло суперскалярну архітектуру. Після блоків попередньої вибірки і першої стадії декодування інструкцій є два конвеєра, U-конвеєр і V-конвеєр. Кожен з них має ступіні кінцевого декодування, виконання інструкцій і буфер запису результатів. На виконання інструкції – в середньому 1 такт. Застосовується блок передбачення розгалужень. Для швидкого забезпечення конвеєрів інструкціями і даними з пам’яті шина даних процесорів є 64-розрядною. З’являється розширення MMX (Multimedia Extensions), яке застосовує принцип SIMD: одна інструкція виконує дії одразу з декількома (2, 4 або 8) комплектами операндів.
Шосте покоління процесорів Intel (мікроархітектура P6: Pentium Pro, Pentium II, Pentium III, Celeron, Xeon). Характерна риса – динамічне виконання, під котрим розуміється виконання інструкцій не в тому порядку (out of order), як передбачено програмним кодом, а в тому, як „зручно” процесору. Інструкції, які поступають на конвеєр, розбиваються на мікрооперації μ-ops, які надалі виконуються суперскалярним процесорним ядром у порядку, зручному процесору. Результати „невпорядкованого” виконання операції збираються в упорядкувальному буфері та в коректному порядку записуються в пам’ять (і порти в/в). Застосовується апаратне перейменування регістрів. Реалізовано виконання по припущенню. Середня кількість тактів на інструкцію (Pentium Pro) скоротилося до 0,5. Введено подвійну незалежну шину (DIB), яка зв’язує процесор із вторинним кешем, що знаходиться в одній упаковці з процесором. AMD у своїх процесорах 6-го покоління (K6) реалізувала невпорядковане виконання, а подвійна шина з’явилася лише в K6-III. Шосте покоління отримало потокове розширення 3DNow! (AMD) і SSE – Streaming SIMD Extension (Intel).
Сьоме покоління (у AMD) почалося з процесора Athlon, в якому суперскалярність і суперконвеєрність охопили блок FPU. Intel розпочала 7 покоління процесором Pentium 4.