Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Архітектура методичка.doc
Скачиваний:
3
Добавлен:
01.12.2019
Размер:
20.71 Mб
Скачать

Покоління процесорів x86

Сімейство x86 нараховує 7 поколінь процесорів:

Перше покоління (процесори 8086, 8080 і математичний сопроцесор 8087) заклало архітектурну основу – набір нерівноправних 16-розрядних регістрів, сегментну систему адресації пам’яті у межах 1Мбайт з великим різноманіттям режимів, систему команд, систему переривань та ін. В процесорах застосовувалась „мала” конвеєризація – поки одні вузли виконували поточну інструкцію, блок попередньої вибірки вибирав з пам’яті наступну. На виконання інструкції було потрібно в середньому 12 тактів процесорного ядра.

Друге покоління (80286 із сопроцесором 80287) принесло захищений режим, що дозволяє задіяти віртуальну пам’ять розміром до 1Гбайт для кожної задачі, користуючись адресованою фізичною пам’яттю у межах 16Мбайт. Захищений режим є основою для побудови багатозадачних операційних систем, в яких жорстко регламентуються взаємовідношення задач з пам’яттю. На виконання інструкції – в середньому 4,5 тактів.

Третє покоління (386/387 DX і SX) – перехід до 32-розрядної архітектури IA-32. Збільшився об’єм адресованої пам’яті (до 4Гбайт реальної, 64Тбайт віртуальної). В систему команд введено можливість переключення розрядності адресації і даних. На виконання інструкції – ті самі 4,5 тактів, але тактова частота досягла 40МГц.

Четверте покоління (486 DX і SX) у видиму архітектурну модель великих змін не внесло, але було прийнято ряд заходів для збільшення продуктивності. Значно ускладнений виконавчий конвеєр – основні операції виконує RISC-ядро, „завдання” для якого готуються з вхідних CISC-інструкцій. На виконання інструкції – в середньому 2 такти. Введено швидкодіючий первинний кеш об’ємом 8-16 Кбайт. Відмовились від зовнішнього математичного сопроцесора: тепер він розміщується на одному кристалі з центральним (FPU – Floating-Point Unit), або відсутній взагалі. Тактова частота досягла 100МГц (Intel) і 133МГц (AMD).

П’яте покоління (Intel Pentium, AMD K5) привнесло суперскалярну архітектуру. Після блоків попередньої вибірки і першої стадії декодування інструкцій є два конвеєра, U-конвеєр і V-конвеєр. Кожен з них має ступіні кінцевого декодування, виконання інструкцій і буфер запису результатів. На виконання інструкції – в середньому 1 такт. Застосовується блок передбачення розгалужень. Для швидкого забезпечення конвеєрів інструкціями і даними з пам’яті шина даних процесорів є 64-розрядною. З’являється розширення MMX (Multimedia Extensions), яке застосовує принцип SIMD: одна інструкція виконує дії одразу з декількома (2, 4 або 8) комплектами операндів.

Шосте покоління процесорів Intel (мікроархітектура P6: Pentium Pro, Pentium II, Pentium III, Celeron, Xeon). Характерна риса – динамічне виконання, під котрим розуміється виконання інструкцій не в тому порядку (out of order), як передбачено програмним кодом, а в тому, як „зручно” процесору. Інструкції, які поступають на конвеєр, розбиваються на мікрооперації μ-ops, які надалі виконуються суперскалярним процесорним ядром у порядку, зручному процесору. Результати „невпорядкованого” виконання операції збираються в упорядкувальному буфері та в коректному порядку записуються в пам’ять (і порти в/в). Застосовується апаратне перейменування регістрів. Реалізовано виконання по припущенню. Середня кількість тактів на інструкцію (Pentium Pro) скоротилося до 0,5. Введено подвійну незалежну шину (DIB), яка зв’язує процесор із вторинним кешем, що знаходиться в одній упаковці з процесором. AMD у своїх процесорах 6-го покоління (K6) реалізувала невпорядковане виконання, а подвійна шина з’явилася лише в K6-III. Шосте покоління отримало потокове розширення 3DNow! (AMD) і SSE – Streaming SIMD Extension (Intel).

Сьоме покоління (у AMD) почалося з процесора Athlon, в якому суперскалярність і суперконвеєрність охопили блок FPU. Intel розпочала 7 покоління процесором Pentium 4.