
- •Двнз «Чернівецький індустріальний коледж» архітектура комп’ютерів
- •Чернівці,
- •1.Історія розвитку обчислювальної техніки
- •2. Поняття про архітектуру еом. Принцип функціонування еом
- •38. Процесор векторного комп'ютера.
- •47. Функції арифметико-логічного пристрою. Способи обробки даних в арифметико-логічному пристрої
- •63. Частково-асоціативне відображення
- •82. Універсальна послідовна шина usb
- •1.Історія розвитку обчислювальної техніки
- •Покоління процесорів x86
- •Поняття архітектури і структурної організації комп’ютера
- •2. Поняття про архітектуру еом. Принцип функціонування еом Структура й принципи функціонування еом
- •3. Склад і призначення основних блоків
- •4. Архітектурні принципи Джона фон Неймана. Ненейманівські архітектури комп'ютерів
- •5. Апаратні і програмні засоби. Класифікація еом
- •Стандартні додатки Windows
- •Службові програми
- •Методи класифікації комп'ютерів.
- •Класифікація за призначенням
- •Великі еом (Main Frame)
- •МікроЕом
- •Персональні комп'ютери
- •Класифікація по рівню спеціалізації
- •Класифікація за розміром
- •Класифікація за сумісністю
- •6. Основні характеристики еом. Пк, особливості, класифікація, основні характеристики Основні характеристики пк
- •7. Персональні комп'ютери
- •8. Робочі станції. Багатотермінальні системи. Сервери
- •9. Кластерні комп'ютерні системи.
- •10. Суперкомп'ютери. Мікроконтролери. Спеціалізовані комп'ютери
- •11. Позиційні системи числення. Двійкові, вісімкові та шістнадцяткові числа
- •Двійкові, вісімкові та шістнадцяткові числа
- •12. Переведення чисел із системи числення з основою k у десяткову систему
- •13. Переведення чисел із десяткової системи у систему числення з основою k.
- •14. Прямий код. Обернений код. Доповняльний код. Способи представлення чисел
- •15. Числа з фіксованою комою. Числа із рухомою комою
- •16. Арифметичні операції. Ділення двійкових чисел
- •17. Арифметичні операції над двійковими числами у форматі з рухомою комою
- •18. Стандарт іеее-754. Розширений двійково-кодований десятковий код обміну ebcdic
- •19. Кодування алфавітно-цифрової інформації. Двійково-кодовані десяткові числа.
- •20. Американський стандартний код інформаційного обміну ascii. Стандарт кодування символів Unicode.
- •21. Кодування та виконання команд в комп'ютері
- •22. Виконання команд на рівні регістрів процессора.
- •23. Конвеєрне виконання команд
- •24. Класифікація архітектури комп'ютера за типом адресованої пам'яті.
- •25. Безпосередня адресація. Пряма адресація. Непряма адресація.
- •26. Відносна адресація. Базова адресація. Індексна адресація.
- •27. Сторінкова адресація. Неявна адресація. Стекова адресація. Використання стекової адресації.
- •28. Одношинна структура процесора.
- •29. Основні операції процесора. Вибірка слова з пам'яті. Запам'ятовування слова в пам'яті. Обмін даними між регістрами.
- •30. Багатошинна структура процесора.
- •31. Приклади виконання операцій в процесорі. Виконання операції додавання двох чисел.
- •32. Вимоги до процесора комп'ютера з простою системою команд. Базові принципи побудови процесора комп'ютера з простою системою команд.
- •33. Взаємодія процесора з пам'яттю в комп'ютері з простою системою команд.
- •34. Виконання команд в процесорі комп'ютера з простою системою команд. Фаза вибирання команди. Фаза декодування команди.
- •35. Конвеєрний процессор.
- •36. Мікродії ярусів конвеєрного процесора.
- •37. Суперскалярні процесори.
- •38. Процесор векторного комп'ютера.
- •39. Класифікація архітектури комп'ютера за рівнем суміщення опрацювання команд та даних.
- •40. Логічні операції.
- •1. Формальна логіка
- •2. Математична логіка
- •3. Програмування
- •41. Операція заперечення. Логічна 1. Логічне або. Виключне або.
- •42. Операції зсуву.
- •43. Операції відношення.
- •44. Арифметичні операції.
- •45. Операції обчислення елементарних функцій.
- •46. Операції перетворення даних.
- •47. Функції арифметико-логічного пристрою. Способи обробки даних в арифметико-логічному пристрої.
- •48. Елементарні операції арифметико-логічного пристрою.
- •49. Складні операції арифметико-логічного пристрою.
- •50. Структура арифметико-логічного пристрою.
- •51. Функції та методи побудови пристрою керування.
- •52. Пристрій керування з жорсткою логікою.
- •53. Пристрій керування на основі таблиць станів.
- •54. Пристрій мікропрограмного керування.
- •55. Порівняння пристроїв керування з жорсткою логікою та пристроїв мікропрограмного керування.
- •56 Ієрархічна організація пам'яті комп'ютера
- •57. Принцип ієрархічної організації пам'яті. Характеристики ефективності ієрархічної організації пам'яті
- •58. Кеш пам'ять в складі комп'ютера. Порядок взаємодії процесора і основної пам'яті через кеш пам'ять
- •59. Забезпечення ідентичності вмісту блоків кеш пам'яті і основної пам'яті
- •60. Функція відображення. Типи функцій відображення
- •61. Повністю асоціативне відображення
- •62. Пряме відображення
- •63. Частково-асоціативне відображення
- •64. Порядок заміщення блоків в кеш пам'яті з асоціативним відображенням
- •65. Підвищення ефективності кеш пам'яті
- •66. Статичний та динамічний розподіл пам'яті. Розподіл основної пам'яті за допомогою базових адрес
- •67. Віртуальна пам'ять. Сторінкова організація пам'яті
- •68. Основні правила сторінкової організації пам'яті. Реалізація сторінкової організації пам'яті
- •69. Апаратна реалізація сторінкової таблиці
- •70. Сегментна організація віртуальної пам'яті
- •71. Захист пам'яті від несанкціонованих звернень
- •72. Захист пам'яті за значеннями ключів
- •73. Кільцева схема захисту пам'яті
- •74. Архітектура системної плати
- •75. Синхронізація
- •76. Система шин
- •77. Особливості роботи шини
- •78. Характеристики шин пк
- •79. Шина pcmcia, vbl
- •80. Шина pci
- •82. Універсальна послідовна шина usb
- •83.Типи передач і формати інформації що передається
- •84. Шина scsi
- •85. Адресація пристроїв і передача даних
- •86. Система команд
- •87. Конфігурування пристроїв scsi
- •88. Ігровий адаптер Game-порт
- •89. Відеоадаптери
- •90. Послідовний інтерфейс. Сом-порт
- •91. Програмна модель сом-порта
- •92. Програмування послідовного зв’язку
- •93. Ініціалізація послідовного порта. Передача і прийом даних
- •95. Паралельний інтерфейс lpt-порт. Стандартний режим spp
- •96. Режим epp
- •97. Режим ecp
- •98. Узгодження режимів
- •99. Приклад програмування
- •100. Клавіатура
- •101. Під'єднання зовнішніх пристроїв до комп'ютера
- •102. Розпізнавання пристроїв введення-виведення
- •103. Методи керування введенням-виведенням
- •104. Програмно-кероване введення-виведення.
- •105. Система переривання програм та організація введення-виведення за перериваннями
- •106. Прямий доступ до пам'яті. Введення-виведення під керуванням периферійних процесорів
- •107. Мультиплексний та селекторний канали введення-виведення
- •108. Використання принципів паралельної обробки інформації в архітектурі комп'ютера
- •109. Вибір кількості процесорів в багатопроцесорній системі
- •110. Багатопотокова обробка інформації. Окр
- •111. Класифікація Шора. Класифікація Фліна
- •112. Типи архітектур систем окмд. Типи архітектур систем мкмд
- •113.Організація комп'ютерних систем із спільною пам'яттю
- •114. Організація комп'ютерних систем із розподіленою пам'яттю
- •115. Комунікаційні мережі багатопроцесорних систем
26. Відносна адресація. Базова адресація. Індексна адресація.
Відносна адресація
При відносній адресації для отримання виконавчої адреси операнда вміст Б адресного поля команди додається до вмісту програмного лічильника ПЛ, як це показано на рис. 3.28. Тобто вміст адресного поля команди є зміщенням відносно адреси поточної команди. Даний тип адресації грунтується на тому, що при вибірці команд звернення відбувається до комірок пам’яті, розміщених поблизу одна від одної. Тим самим зменшується довжина адресної частини команди, оскільки довжина поля зміщення може бути досить малою. Більше того, при переміщенні програми в пам’яті значення зміщення не змінюється, оскільки взаємне розміщення в пам’яті команд програми при цьому не змінюється.
АЧ
Рис. 3.28. Адресація
основної пам’яті з використанням
відносної адресації
Цей тип адресації іще називається відносною адресацією з перемінною базою, оскільки тут в якості регістра бази використаний програмний лічильник і модифікація базової адреси здійснюється автоматично.
Базова адресація
При використанні базової адресації (або базування) адресна частина команди вміщує два поля. В першому полі знаходиться адреса В регістра із регістрового файлу процесора, в якому зберігається база, до якого додається зміщення Б із другого поля і тим самим формується виконавча адреса операнда (рис. 3.29). Ця адреса поступає на адресні входи основної пам’яті ОП, у відповідну комірку якої в режимі запису записується операнд із регістра даних РгД, а в режимі зчитування зчитується операнд в регістр даних РгД.
Даний спосіб адресації дозволяє працювати з операндами із деякого сегмента пам’яті не змінюючи базу. Він ефективний при потребі обробки масиву даних. В якості бази тут виступає адреса першого елементу масиву, а всі інші його елементи вказуються шляхом додавання зміщення до адреси першого елементу масиву.
Якщо основна пам’ять може зберігати М слів, регістровий файл процесора може зберігати N слів, а сегмент має розмір Ь слів, то, використовуючи двійкове кодування, поле В буде займати n біт.
Рис. 3.29. Базова
адресація ОП з використанням бази із
регістрової пам'яті
Основна перевага відносної адресації - скорочення довжини команди за рахунок зменшення її адресної частини, а також спрощення розподілу пам’яті при написанні складних програм шляхом добавлення до кожного фрагменту програми відповідного значення базової адреси. Таким чином забезпечується переміщуваність фрагментів програми в полі пам’яті.
Індексна адресація
Індексна адресація використовується при виконанні циклів, коли потрібно збільшення або зменшення адреси на деяку величину. Цей спосіб адресації подібний до відносної адресації, при якій адреса може автоматично змінюватися в процесі виконання програми. Індексація є засобом для багатократного виконання одних і тих же відрізків програми над різними наборами (масивами) вхідних даних. Тим самим забезпечується мінімальна залежність довжини програми від кількості повторюваних відрізків програми. При цьому коди команд програми залишаються без змін. Для отримання виконавчої адреси адресна частина команди додається до вмісту спеціального регістра, в якому зберігається номер оброблюваного масиву чисел. Ці регістри називають індексними, а їх вміст - індексною величиною, або індексом (рис. 3.30).
АЧ
Рис. 3.30. Формування
адреси при використанні індексної
адресації
Вказівка про індексну адресацію вміщується в полі типу адресації. При наявності кількох індексних регістрів в цих розрядах команди вказується номер того індексного регістра, в якому зберігається значення індексу оброблюваного в даний час масиву інформації. Індекси можуть зберігатися як в спеціальних індексних регістрах, так і в регістровій пам’яті процесора. Вміст індексних регістрів змінюється після закінчення деякого циклу обробки. При цьому до попереднього значення індексу добавляється приріст, значення якого залежить від розміщення операндів в пам’яті.
Різновидністю індексної адресації є автоіндексація, при якій значення індексу є відомим наперед. Найчастіше операнди розміщуються в пам’яті послідовно і тому це значення рівне +1 (так звана автоінкрементна адресація) або -І (так звана автодекрементна адресація). Порядок формування адреси при використанні автоінкрементної та автоде- крементної адресації показано на рис. 3.31, де для забезпечення переміщення по комірках пам’яті використовується лічильник.
АЧ
Рис. 3.31. Формування
адреси при використанні автоінкрементної
та автодекрементноїадресації
Операції індексної арифметики виконуються в спеціальному індексному арифметичному пристрої, або в арифметико-логічному пристрої процесора. Команди індексної арифметики входять до складу команд керування. Вони забезпечують зміну значення індексу шляхом добавлення до нього приросту, перевірку закінчення індексного циклу та засилання початкових значень індексу. Значення індексів, приростів та інформаційні біти циклів формують керуюче слово, яке розміщується в одній або декількох командах керування. Послідовність таких управляючих слів забезпечує роботу з масивами даних.