
- •Двнз «Чернівецький індустріальний коледж» архітектура комп’ютерів
- •Чернівці,
- •1.Історія розвитку обчислювальної техніки
- •2. Поняття про архітектуру еом. Принцип функціонування еом
- •38. Процесор векторного комп'ютера.
- •47. Функції арифметико-логічного пристрою. Способи обробки даних в арифметико-логічному пристрої
- •63. Частково-асоціативне відображення
- •82. Універсальна послідовна шина usb
- •1.Історія розвитку обчислювальної техніки
- •Покоління процесорів x86
- •Поняття архітектури і структурної організації комп’ютера
- •2. Поняття про архітектуру еом. Принцип функціонування еом Структура й принципи функціонування еом
- •3. Склад і призначення основних блоків
- •4. Архітектурні принципи Джона фон Неймана. Ненейманівські архітектури комп'ютерів
- •5. Апаратні і програмні засоби. Класифікація еом
- •Стандартні додатки Windows
- •Службові програми
- •Методи класифікації комп'ютерів.
- •Класифікація за призначенням
- •Великі еом (Main Frame)
- •МікроЕом
- •Персональні комп'ютери
- •Класифікація по рівню спеціалізації
- •Класифікація за розміром
- •Класифікація за сумісністю
- •6. Основні характеристики еом. Пк, особливості, класифікація, основні характеристики Основні характеристики пк
- •7. Персональні комп'ютери
- •8. Робочі станції. Багатотермінальні системи. Сервери
- •9. Кластерні комп'ютерні системи.
- •10. Суперкомп'ютери. Мікроконтролери. Спеціалізовані комп'ютери
- •11. Позиційні системи числення. Двійкові, вісімкові та шістнадцяткові числа
- •Двійкові, вісімкові та шістнадцяткові числа
- •12. Переведення чисел із системи числення з основою k у десяткову систему
- •13. Переведення чисел із десяткової системи у систему числення з основою k.
- •14. Прямий код. Обернений код. Доповняльний код. Способи представлення чисел
- •15. Числа з фіксованою комою. Числа із рухомою комою
- •16. Арифметичні операції. Ділення двійкових чисел
- •17. Арифметичні операції над двійковими числами у форматі з рухомою комою
- •18. Стандарт іеее-754. Розширений двійково-кодований десятковий код обміну ebcdic
- •19. Кодування алфавітно-цифрової інформації. Двійково-кодовані десяткові числа.
- •20. Американський стандартний код інформаційного обміну ascii. Стандарт кодування символів Unicode.
- •21. Кодування та виконання команд в комп'ютері
- •22. Виконання команд на рівні регістрів процессора.
- •23. Конвеєрне виконання команд
- •24. Класифікація архітектури комп'ютера за типом адресованої пам'яті.
- •25. Безпосередня адресація. Пряма адресація. Непряма адресація.
- •26. Відносна адресація. Базова адресація. Індексна адресація.
- •27. Сторінкова адресація. Неявна адресація. Стекова адресація. Використання стекової адресації.
- •28. Одношинна структура процесора.
- •29. Основні операції процесора. Вибірка слова з пам'яті. Запам'ятовування слова в пам'яті. Обмін даними між регістрами.
- •30. Багатошинна структура процесора.
- •31. Приклади виконання операцій в процесорі. Виконання операції додавання двох чисел.
- •32. Вимоги до процесора комп'ютера з простою системою команд. Базові принципи побудови процесора комп'ютера з простою системою команд.
- •33. Взаємодія процесора з пам'яттю в комп'ютері з простою системою команд.
- •34. Виконання команд в процесорі комп'ютера з простою системою команд. Фаза вибирання команди. Фаза декодування команди.
- •35. Конвеєрний процессор.
- •36. Мікродії ярусів конвеєрного процесора.
- •37. Суперскалярні процесори.
- •38. Процесор векторного комп'ютера.
- •39. Класифікація архітектури комп'ютера за рівнем суміщення опрацювання команд та даних.
- •40. Логічні операції.
- •1. Формальна логіка
- •2. Математична логіка
- •3. Програмування
- •41. Операція заперечення. Логічна 1. Логічне або. Виключне або.
- •42. Операції зсуву.
- •43. Операції відношення.
- •44. Арифметичні операції.
- •45. Операції обчислення елементарних функцій.
- •46. Операції перетворення даних.
- •47. Функції арифметико-логічного пристрою. Способи обробки даних в арифметико-логічному пристрої.
- •48. Елементарні операції арифметико-логічного пристрою.
- •49. Складні операції арифметико-логічного пристрою.
- •50. Структура арифметико-логічного пристрою.
- •51. Функції та методи побудови пристрою керування.
- •52. Пристрій керування з жорсткою логікою.
- •53. Пристрій керування на основі таблиць станів.
- •54. Пристрій мікропрограмного керування.
- •55. Порівняння пристроїв керування з жорсткою логікою та пристроїв мікропрограмного керування.
- •56 Ієрархічна організація пам'яті комп'ютера
- •57. Принцип ієрархічної організації пам'яті. Характеристики ефективності ієрархічної організації пам'яті
- •58. Кеш пам'ять в складі комп'ютера. Порядок взаємодії процесора і основної пам'яті через кеш пам'ять
- •59. Забезпечення ідентичності вмісту блоків кеш пам'яті і основної пам'яті
- •60. Функція відображення. Типи функцій відображення
- •61. Повністю асоціативне відображення
- •62. Пряме відображення
- •63. Частково-асоціативне відображення
- •64. Порядок заміщення блоків в кеш пам'яті з асоціативним відображенням
- •65. Підвищення ефективності кеш пам'яті
- •66. Статичний та динамічний розподіл пам'яті. Розподіл основної пам'яті за допомогою базових адрес
- •67. Віртуальна пам'ять. Сторінкова організація пам'яті
- •68. Основні правила сторінкової організації пам'яті. Реалізація сторінкової організації пам'яті
- •69. Апаратна реалізація сторінкової таблиці
- •70. Сегментна організація віртуальної пам'яті
- •71. Захист пам'яті від несанкціонованих звернень
- •72. Захист пам'яті за значеннями ключів
- •73. Кільцева схема захисту пам'яті
- •74. Архітектура системної плати
- •75. Синхронізація
- •76. Система шин
- •77. Особливості роботи шини
- •78. Характеристики шин пк
- •79. Шина pcmcia, vbl
- •80. Шина pci
- •82. Універсальна послідовна шина usb
- •83.Типи передач і формати інформації що передається
- •84. Шина scsi
- •85. Адресація пристроїв і передача даних
- •86. Система команд
- •87. Конфігурування пристроїв scsi
- •88. Ігровий адаптер Game-порт
- •89. Відеоадаптери
- •90. Послідовний інтерфейс. Сом-порт
- •91. Програмна модель сом-порта
- •92. Програмування послідовного зв’язку
- •93. Ініціалізація послідовного порта. Передача і прийом даних
- •95. Паралельний інтерфейс lpt-порт. Стандартний режим spp
- •96. Режим epp
- •97. Режим ecp
- •98. Узгодження режимів
- •99. Приклад програмування
- •100. Клавіатура
- •101. Під'єднання зовнішніх пристроїв до комп'ютера
- •102. Розпізнавання пристроїв введення-виведення
- •103. Методи керування введенням-виведенням
- •104. Програмно-кероване введення-виведення.
- •105. Система переривання програм та організація введення-виведення за перериваннями
- •106. Прямий доступ до пам'яті. Введення-виведення під керуванням периферійних процесорів
- •107. Мультиплексний та селекторний канали введення-виведення
- •108. Використання принципів паралельної обробки інформації в архітектурі комп'ютера
- •109. Вибір кількості процесорів в багатопроцесорній системі
- •110. Багатопотокова обробка інформації. Окр
- •111. Класифікація Шора. Класифікація Фліна
- •112. Типи архітектур систем окмд. Типи архітектур систем мкмд
- •113.Організація комп'ютерних систем із спільною пам'яттю
- •114. Організація комп'ютерних систем із розподіленою пам'яттю
- •115. Комунікаційні мережі багатопроцесорних систем
19. Кодування алфавітно-цифрової інформації. Двійково-кодовані десяткові числа.
Кодування алфавітно-цифрової інформації
Двійково-кодовані десяткові числа
Вище було показано представлення в комп’ютері даних у двійковій системі числення. Далі розглянемо, як ці внутрішні дані можуть бути перетворені у форму, яка піддається інтерпретації людиною.
Двійково-кодоване десяткове число - це десяткове число, кожна цифра якого представлена в двійковій формі. Одна з перших числова система кодування десяткових чисел двійковим кодом (Binary-coded decimal - BCD) була використана в великих і середнього розміру комп’ютерних системах фірми IBM. Система BCD кодує кожну цифру десяткового числа 4-розрядним двійковим кодом. Коли використовується 8-розрядне число, тобто байт, то старші 4 біти називають зоною, а молодші - цифрою. Ця домовленість прийшла з часів перфокарт, де кожна колонка карти могла мати “зональний отвір” в одній з двох верхніх стрічок і “цифровий отвір” в одній з десяти нижніх стрічок. Старші чотири розряди в байті BCD використовуються для представлення знаку, який може мати одне з трьох значень: число без знаку представляється кодом 1111; додатне число представляється кодом 1100; від’ємне число представляється кодом 1101. Кодування для двійково-кодованих десяткових чисел показане в табл. 2.8.
Цифра |
Код BCD |
0 |
0000 |
1 |
0001 |
2 |
0010 |
3 |
0011 |
4 |
0100 |
5 |
0101 |
6 |
0110 |
7 |
0111 |
8 |
1000 |
9 |
1001 |
Зони |
|
1111 |
Без знаку |
1100 |
Додатне |
1101 |
Від’ємне |
Як видно з таблиці, шість можливих двійкових значень (від 1010 до 1111) не використовуються. Хоча втрачається приблизно 40 % можливих значень, але набуваються значні переваги в точності. Наприклад, десяткове число 0.3, перетворене в двійковий код та обмежене 8-розрядною сіткою, при зворотному перетворенні має значення 0.296875, тобто похибка складає приблизно 1.05 %. В коді BCD число запам’ятається безпосередньо як 1111 0011, не допускаючи жодної помилки.
Цифри в коді BCD займають лише чотири розряди, тому можна зберегти місце і спростити обчислення, розмістивши поряд числа з одним знаком. Цей процес називається пакуванням, а сформовані числа - пакованими десятковими числами.
Приклад:
Подамо число -1265 трьома байтами, використовуючи паковані цифри коду BCD.
Зонне десяткове кодування для числа 1265 є наступним:
1111 0001 1111 0010 1111 0110 1111 0101
Після пакування отримаємо:
0010 0110 0101
Додавши знак після цифри молодшого розряду і заповнивши цифру старшого розряду одиницями до 3 байтів, отримаємо:
1111 0001 001001100101 1101.
Код BCD (або його ііце називають кодом 8421) знайшов найбільше поширення в обчислювальній техніці. Цей код зручний для виконання перетворення з десяткової системи у двійкову і навпаки. Цей код адитивний, тобто сума представлення двох цифр є кодом їх суми.
Разом з тим, використання цього коду пов’язане з труднощами пошуку переносу в наступний десятковий розряд і важкістю переходу до оберненого та доповняльного коду для десяткових чисел. Це пояснюється тим, що код 8421 не є самодоповнюючим, тобто інверсія його двійкових цифр не дає коду доповнення десяткової цифри до 9. В табл. 2.9 наведено інші широко вживані двійково-десяткові коди, а саме код з надлишком 3 та код з 5. Можна побудувати й інші двійково-десяткові коди, наприклад 2421, 5121 тощо.
Десяткові цифри |
Код з надлишком 3 |
Код 2 з 5 |
0 |
0011 |
11 000 |
1 |
0100 |
00 011 |
2 |
0101 |
00 101 |
3 |
0110 |
00 110 |
4 |
0111 |
01 001 |
5 |
1000 |
01 010 |
6 |
1001 |
01 100 |
7 |
1010 |
10 001 |
8 |
1011 |
01 001 |
9 |
1100 |
10 00 |
Код з надлишком 3 зручний при виконанні арифметичних операцій над десятковими цифрами, оскільки він є самодоповнюючим. Крім того, легко визначається перенос, так як сума двох доданків, кожне з яких береться з надлишком 3, вийде з надлишком б, що виключає лишні кодові комбінації. Для отримання правильного коду суми з отриманого результату відкидається 3. У деяких випадках для використання суттєво, що код нуля містить 1 і тому легко відрізнити наявність коду нуля від пропадання коду цифри. Код з надлишком 3 не дуже зручний для перетворення чисел з однієї системи числення в іншу. В коді 2 з 5 десяткові цифри зображаються п’ятьма розрядами, причому кожне значення містить дві 1. Ця надлишковість використовується для контролю правильності передачі цифри. Будь-яка помилка в одному розряді перетворює 0 в 1 або 1 в 0, в результаті вийде більше або менше двох 1, що вкаже на помилку. При одночасній появі двох помилок можливі випадки, коли їх можна не знайти (якщо 0 в одному розряді перетворюється в 0,а в іншому розряді 1 в 0).