
- •Методы оптимизации. Тест
- •2.1). Что означает слово «оптимизация»? Какая функция называется целевой? Дать определение локального и глобального минимумов функции.
- •2.2). Сравнить необходимые количества вычисленных значений Nd и Nn функции f(X) при поиске ее точки минимума на отрезке длины 1 с точностью 10-5 методом деления отрезка пополам и методом перебора.
- •2.3). Сформулировать достаточные условия сходимости метода Ньютона.
- •2.4). Сформулировать необходимые и достаточные условия безусловного экстремума функции f(X) одной переменной.
- •2.5). Функции какого вида называются квадратичными функциями n переменных?
- •2.6). Какая нумерация вершин симплекса называется правильной? и 2.7). Не проходили
- •2.8). Дать определение общей задачи линейного программирования.
- •2.1). Что такое точная нижняя грань функции на множестве? Как соотносятся точная нижняя грань и минимум функции на множестве? Привести примеры.
- •2.3). Сформулировать достаточное условие монотонной сходимости метода Ньютона. Скорость сходимости метода.
- •2.5). Каким свойством обладает квадратичная функция с положительно определенной матрицей a?
- •2.8). Описать алгоритм сведения общей задачи к задаче в канонической форме линейного программирования. Привести пример.
- •2.1). Сформулировать условие Липшица для функции f(X) на отрезке [a;b]. Всякая ли функция f(X), удовлетворяющая условию Липшица на отрезке [a;b], унимодальна на нем?
- •2.2). Доказать, что погрешность определения точки минимума X* функции f(X) методом перебора не превосходит величины .
- •2.3). Сформулировать оценку погрешности определения минимума f* многомодальной функции методом перебора.
- •2.4). Классифицировать квадратичную форму и матрицу Гессе .
- •2.8). Какие задачи линейного программирования можно решить графически?
- •2.1). Сформулировать свойства функций, удовлетворяющих на отрезке [a;b] условию Липшица.
- •2.3). Сформулировать достаточные условия сходимости метода Ньютона.
- •2.4). Классифицировать квадратичную форму и матрицу Гессе .
- •2.5). Что такое скорость сходимости минимизирующей последовательности? Какие скорости сходимости вы знаете?
- •2.8). Дать определение общей задачи линейного программирования.
- •2.1). Какая функция называется унимодальной на отрезке [a,b]? Сформулировать свойства унимодальных функций.
- •2.2). Зависит ли точность определения X*, которую гарантируют методы дихотомии и золотого сечения в результате n вычислений функции f(X), от конкретной функции f(X)?
- •2.3). Сформулировать достаточное условие монотонной сходимости метода Ньютона. Скорость сходимости метода.
- •2 .4). Вычислить и нарисовать градиенты, а также вычислить матрицу Гессе функции в точках .
- •2.5). Когда говорят, что в итерационном процессе производится исчерпывающий спуск?
- •2.8). Дать определение канонической задачи линейного программирования.
- •2.1). Какая функция называется выпуклой на отрезке [a,b]? Каков геометрический смысл выпуклости функции? Сформулировать два необходимых и достаточных дифференциальных условий выпуклости функций.
- •2.2). Повысится ли эффективность метода поразрядного поиска, если шаг поиска ∆ последовательно уменьшать не в 4, а в какое-либо другое число раз? Ответ обосновать.
- •2.3). Модификации метода Ньютона (метод Ньютона-Рафсона, метод Марквардта). Достоинства и недостатки методов. Скорость сходимости.
- •2.4). Записать приращение функции f(X)∈c2(En) в точке X через градиент и матрицу Гессе.
- •2.5). Какие направления дифференцируемой в точке xk функции f(X) называются направлениями убывания? Каков геометрический смысл направления убывания?
- •2.8). Описать алгоритм графического решения задачи линейного программирования.
- •2.1). В чем заключается классический метод минимизации функций? Для каких целей разработан классический метод минимизации функций? Какова практическая ограниченность применимости этого метода?
- •2.2). Зависит ли точность определения X*, которую получают методом парабол в результате n вычислений функции f(X), от конкретной функции f(X)?
- •2.3). Увеличение используемого значения константы Липшица l при реализации метода ломаных приводит к замедлению сходимости метода. Объяснить этот факт с помощью геометрической иллюстрации.
- •2.4). Что такое градиент и антиградиент функции многих переменных и каков их геометрический смысл? Что такое матрица Гессе функции многих переменных?
- •2.5). Когда говорят, что сильно выпуклая функция f(X) имеет “овражный характер”? Какие задачи минимизации называются хорошо обусловленными, а какие − плохо обусловленными?
- •2.8). Какая задача оптимизации называется задачей линейного программирования?
2.4). Записать приращение функции f(X)∈c2(En) в точке X через градиент и матрицу Гессе.
С помощью
градиента и матрицы Гессе, используя
разложение в ряд Тейлора, приращение
функции f(x)
может быть записано в форме:
,
где
- сумма всех членов разложения, имеющих
порядок выше второго,
- квадратичная форма.
2.5). Какие направления дифференцируемой в точке xk функции f(X) называются направлениями убывания? Каков геометрический смысл направления убывания?
Направление
вектора pk
называется
направлением
убывания функции
f(x)
в точке xk,
если при всех достаточно малых
положительных α выполняется неравенство
.
Теорема
(достаточное условие
направления убывания). Пусть
функция f(x)
дифференцируема в точке xk.
Если вектор pk
удовлетворяет условию
,
то направление вектора pk
является направлением убывания.
Функция диффер.
при всех достаточно малых α>0, т.е. вектор pk задает направление убывания функции f(x) в точке xk.
2.8). Описать алгоритм графического решения задачи линейного программирования.
Вариант 8
2.1). В чем заключается классический метод минимизации функций? Для каких целей разработан классический метод минимизации функций? Какова практическая ограниченность применимости этого метода?
Алгоритм минимизации f(x) на отрезке [a,b] классическим методом:
1). Находим все точки возможного экстремума функции f(x) на интервале (a,b), т.е. корни уравнения f’(x)=0.
2). Вычисляем значения f(x) во всех найденных точках.
3). Наименьшему из вычисленных значений соответствует точка глобального минимума f(x) на [a,b].
Т.к. из условия локального экстремума функции f(x), дифференцируемой достаточное количество раз для поиска точки глобального минимума требуется вычисление высших производных функции f(x), в большинстве случаев бывает проще сравнить значения во всех стационарных точках, не интересуясь их характером. С учетом этого разработан классический метод минимизации функций.
2.2). Зависит ли точность определения X*, которую получают методом парабол в результате n вычислений функции f(X), от конкретной функции f(X)?
2.3). Увеличение используемого значения константы Липшица l при реализации метода ломаных приводит к замедлению сходимости метода. Объяснить этот факт с помощью геометрической иллюстрации.
2.4). Что такое градиент и антиградиент функции многих переменных и каков их геометрический смысл? Что такое матрица Гессе функции многих переменных?
Градиентом непрерывно дифференцируемой функции f(x) в точке x называется вектор-столбец, элементами которого являются частные производные первого порядка, вычисленные в данной точке. Вместе с градиентом можно определить вектор антиградиента, равный по модулю вектору градиента, но противоположный по направлению.
Геометрический смысл: градиент (антиградиент) функции направлен по нормали к поверхности уровня, т.е. перпендикулярно к касательной плоскости, проведенной в точке x, в сторону наибольшего возрастания (убывания) функции в данной точке.
Матрицей Гессе H(x) дважды непрерывно дифференцируемой в точке x функции f(x) называется матрица частных производных второго порядка, вычисленных в данной точке. Матрица Гессе является симметрической размера nxn.