Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ryady.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
820.74 Кб
Скачать

Ьная работа для заочного отделения

3 Семестр.

Рекомендуемая литература

Данко, П. Е. Высшая математика в упражнениях и задачах: в 2 ч. / П.Е. Данко, А. Г. Попов, Т. Я. Кожевникова. - 5-е изд., испр. - М.: Высшая школа.Ч.2.-1998.-304с.

Введение.

Выполнять контрольную работу следует строго по графику. Каждый студент выполняет контрольную работу под вариантом, номер которого совпадает с его порядковым номером в групповом журнале. Решение задач нужно предоставить в письменном виде на отдельных листах (формата А 4, в скрепленном виде). Сдавать работу можно как в печатном, так и в письменном виде. Выполняя к.р. , студент должен переписать условие соответствующей задачи, написать подробное решение, выделив ответ. Там, где это необходимо, дать краткие пояснения по ходу решения.

Пример оформления титульного листа

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

«Южно-Уральский государственный университет»

Контрольная работа

По дисциплине:”математика”

Вариант № 100

Выполнил студент 1 курса

Заочного отделения

Гр…..-166

Иванов И.И.

Проверил………….

Златоуст

2012г.

1. Числовые ряды. Достаточные признаки их сходимости

Пусть u1, u2, u3, … , un, …, где un = f(n), –– бесконечная числовая последовательность. Выражение u1 + u2 + u3 + … + un + … называется бесконечным числовым рядом, а числа u1, u2, u3, … , un, … –– членами ряда; un = f(n) называется общим членом. Ряд часто записывают в виде .

Сумму первых n членов числового ряда обозначают через Sn и называют nчастичной суммой ряда:

.

Ряд называется сходящимся, если его n-я частичная сумма Sn при неограниченном возрастании n стремится к конечному пределу, т.е. если . Число S называют суммой ряда. Если же n-я частичная сумма ряда при не стремится к конечному пределу, то ряд называют расходящимся.

Ряд , составленный из членов любой убывающей геометрической прогрессии, является сходящимся и имеет сумму .

Ряд , называемый гармоническим, расходится.

Необходимый признак сходимости. Если ряд сходится, то , т.е. при предел общего члена сходящегося ряда равен нулю.

Таким образом, если , то ряд расходится.

Перечислим важнейшие признаки сходимости и расходимости рядов с положительными членами.

Первый признак сравнения. Пусть даны два ряда

(1)

и

, (2)

причем каждый член ряда (1) не превосходит соответствующего члена ряда (2), т.е. . Тогда если сходится ряд (2), то сходится и ряд (1); если расходится ряд (1), то расходится и ряд (2).

Этот признак остается в силе, если неравенства выполняются не при всех n, а лишь начиная с некоторого номера n = N.

Второй признак сравнения. Если существует конечный отличный от нуля предел , то ряды и одновременно сходятся или расходятся.

Радикальный признак Коши. Если для ряда

существует , то этот ряд сходится при , расходится при .

Признак Даламбера. Если для ряда существует , то этот ряд сходится при , расходится при .

Интегральный признак Коши. Если f(x) при –– непрерывная положительная и монотонно убывающая функция, то ряд , где сходится или расходится в зависимости от того, сходится или расходится интеграл .

Рассмотрим теперь ряды, члены которых имеют чередующиеся знаки, т.е. ряды вида , где .

Признак сходимости знакочередующегося ряда (признак Лейбница). Знакочередующийся ряд сходится, если абсолютные величины его членов монотонно убывают, а общий член стремится к нулю. То есть, если выполняются следующие два условия: 1) и 2) .

Возьмем n-ю частичную сумму сходящегося знакочередующегося ряда, для которого выполняется признак Лейбница:

.

Пусть –– n-й остаток ряда. Его можно записать как разность между суммой ряда S и n-й частичной суммой Sn, т.е. . Нетрудно видеть, что

.

Величина оценивается с помощью неравенства .

Остановимся теперь на некоторых свойствах знакопеременных рядов (т.е. знакочередующихся рядов и рядов с произвольным чередованием знаков своих членов).

Знакопеременный ряд сходится, если сходится ряд .

В этом случае исходный ряд называется абсолютно сходящимся.

Сходящийся ряд называется условно сходящимся, если ряд расходится.

Пример 1. Исследовать сходимость ряда

.

Решение. Данный ряд составлен из членов бесконечно убывающей геометрической прогрессии и поэтому сходится. Найдем его сумму. Здесь , (знаменатель прогрессии). Следовательно,

.

Пример 2. Исследовать сходимость ряда .

Решение. Данный ряд получен из гармонического отбрасыванием первых десяти членов. Следовательно, от расходится.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]