
- •1. Содержание дисциплины, понятие об изоляционных работах и их роли при строительстве скважин.
- •2. Основные особенности повторного ремонтно-изоляционного цементирования
- •Требования к материалам, применяемым для ремонтно-изоляционного цементирования
- •4. Классификация тампонажных материалов применяемых при рир. В настоящее время при ремонтно-изоляционных работах в нефтяных и газовых скважинах используются различные тампонажные материалы:
- •Занятие 2 Изоляция зон Поглощения бурового и тампонажного растворов
- •1. Поглощения бурового раствора
- •2. Опыт применения наполнителей для изоляции зон поглощений
- •3. Тампонажный портландцемент
- •3.1. Классификация тампонажных портландцементов по гост 1581-96
- •3.2. Разновидности тампонажных портландцементов
- •1. Пластифицированный портландцемент
- •2. Гидрофобный портландцемент.
- •3. Сульфатостойкий портландцемент.
- •A)4.1. Шлакопортландцемент
- •6. Песчанистый тампонажный портландцемент.
- •7. Облегченные тампонажные цементы
- •8. Утяжеленные тампонажные цементы
- •4. Тампонажные материалы на основе минеральных вяжущих для ликвидации зон поглощений
- •4.1. Смеси для ликвидации зон поглощения
- •Занятие 3 Изоляция зон Поглощения бурового и тампонажного растворов
- •1. Тампонажные пасты
- •2. Полимерные тампонажные материалы.
- •Тампонажная смесь на основе фенолформальдегидных смол (тсд-10, тсд-9)
- •Занятие 4 нефтегазоводопроявления и их ликвидация.
- •1. Нефтегазоводопроявления
- •2. Тампонажные материалы для ликвидации нефтегазоводопроявлений
- •I группа. Методы, основанные на закачке в пласт органических полимерных материалов.
- •II группа. Методы, основанные на применение неорганических водогазоизолирующих составов.
- •Составы для водогазоизоляционных работ на основе поливинилового спирта.
- •III группа. Метод основан на закачке элементоорганических соединений.
- •Занятие 5 Установка цементных мостов
- •1. Назначения цементных мостов и требования к ним.
- •2. Расчет объем тампонажного материала
- •3. Особенности выбора рецептуры растворов вяжущих веществ для установки мостов.
- •4. Требования, предъявляемые к тампонажному материалу.
- •5. Планирование работ по установке цементных мостов
- •6. Мероприятия по предупреждению осложнений при установке мостов.
- •Занятие 6 методы контоля за технологическими характеристиками тампонажного раствора-камня
- •1. Водоотдача тампонажных растворов
- •2. Седиментация в тампонажных растворах и ее последствия
- •3. Контракция
- •B.4. Усадка
- •C.5. Прочность цементного камня
- •6. Проницаемость цементного камня.
- •7. Сцепление цементного камня с обсадными трубами
- •8. Время загустевания
- •9. Коэффициент тампонирующей способности
- •Занятие 8 Ремонтно-изоляционные работы в скважине
- •1. Методы выявления дефектов в скважине
- •2. Способы ремонтного цементирования
- •2.1. Цементирование без пакера
- •D.Цементирование с извлекаемым пакером
- •E.Цементирование с неизвлекаемым пакером
- •F.Цементирование под давлением
- •G.Изоляция зон поглощений
Занятие 4 нефтегазоводопроявления и их ликвидация.
Содержание
1. Нефтегазоводопроявления
2. Тампонажные материалы для ликвидации нефтегазоводопроявлений
1. Нефтегазоводопроявления
К технологическим факторам возникновения проявлений относят причины, связанные с нарушением технологии проводки скважины. Сюда включают и ошибки, допущенные при разработке технического проекта на строительства скважины, прогнозирование пластовых давлений в процессе бурения и т.д.
Создание противодавления на пласт с целью предотвращения проявлений обеспечивается выбором плотности бурового раствора. Современная практика бурения предусматривает в основном проводку скважин при превышении забойным давлением пластового при статических условиях.
Недостаточная плотность бурового раствора - основная причина проявления и обусловлена ошибками в техническом проекте и технологических регламентах проводки скважины, неточность прогноза пластовых давлений в процессе бурения, несвоевременностью принятии решения об утяжелении бурового раствора или спуске промежуточной колонны, поступлением в буровой раствор жидкости (газа) с меньшей плотностью, вспениваем бурового раствора, некачественной очисткой бурового раствора от газа, седиментацией твердой фазы бурового раствора и др.
При выполнении отдельных технологических операций (спуск и подъем колонны труб, остановка буровых насосов) возможно уменьшение давления в скважине ниже гидростатического, что может способствовать в определенных условиях поступлению из пласта флюида.
При спуске колонны труб в скважину уменьшение давления ниже гидростатического в скважине наблюдается в начале и в конце операции. В начале спуска уменьшение давления связано с приподъемом колонны труб для снятия ее с пневмоклиньев или элеватора, а в конце – с инерционной компонентой столба бурового раствора.
В процессе остановки буровых насосов возникает импульсное уменьшение давления в скважине в следствие гирдавлического удара, что может привести к поступлению флюида только в особых случаях. Среди других технологических операций наибольшую опасность к возникновению проявлений флюида представляют операции, связанные с уменьшением давления в скважине. Это, в частности, ликвидация прихватов колонны труб с помощью жидкостных ванн и других способов, основанных на уменьшении давления в скважине.
Снижение давления на пласт, обусловлено также уменьшением высоты столба бурового раствора в скважине. Основными причинами снижения уровня раствора в скважине являются: поглощение бурового раствора с падением уровня, недолив скважины при подъеме колоны труб, перетоки между трубами и затрубным пространством или пластами. Для любой причины снижения уровня существует его критическое значение, превышение которого приводит к возникновению проявления.
Одна из возможных технологических причин возникновения проявлений – образование искусственных зон АВПД, которые характерны при разбуривании многопластовых месторождений, где залегают газо-нефтенасыщенные пласты. Образование искусственных зон АВПД связано с негерметичностью цементного камня за промежуточными и эксплуатационными колоннами, а также нарушением обсадных колонн. Некачественно зацементированные скважины и неизолированные аварийные стволы являются каналами для межпластовых перетоков флюидов из нижележащих пластов в вышележащие.
Причины проявлений без снижения давления на пласт.
Пластовый флюид может поступать в скважину и при превышении забойного давления над пластовым в результате диффузионных и осмотических процессов, каппилярных перетоков, гравитационного замещения и других явлений.
Пластовые жидкости и газы могут поступать в скважину прежде всего, если пластовое давление хотя бы в одном из горизонтов будет выше давления, создаваемого на него промывочной жидкостью.
Приток жидкостей и газов может возникнуть при вскрытии объекта с повышенным коэффициентом аномальности, при плохом контроле за плотностью и дегазацией промывочной жидкости, при понижении уровня жидкости в скважине в результате поглощения, либо во время подъема колонны труб без долива, при быстром подъеме колонны труб (особенно с алмазным или одношарошечным долотом, с сальником на долоте либо с замках, с пакером и т.д.).
Интенсивность притока зависит от перепада давления, проницаемости приствольной зоны пласта, свойств пластовой жидкости и газов и других факторов и нередко бывает весьма значительной.
Некоторое количество пластовых жидкостей и газов поступает в промывочную жидкость с обломками выбуренной породы. Пластовый газ может поступать также в результате диффузии через проницаемые стенки скважины. Интенсивность притока пластовых жидкостей и газов, как правило, невелика и не представляет опасности, если нет длительных перерывов циркуляции, и на поверхности промывочная жидкость хорошо дегазируется.
При благоприятных условиях пластовые жидкости газы могут поступать в скважину под влиянием каппилярного давления, возникающего вследствие искривления менисков на поверхности контакта двух несмешивающихся жидкостей, например пластовой нефти и водного промывочного раствора.
При длительных перерывах циркуляции в промывочную жидкость может поступать некоторое количество газа из верхней части газоносного пласта. Во время промывки в первый период и после ее прекращения под влиянием избыточного давления из промывочной жидкости в газоносный объект отфильтровывается дисперсионная среда. Плотность газа невелика, поэтому избыточное давление вблизи подошвы газоносного объекта выше, чем у кровли, и эта разность тем значительнее, чем больше мощность объекта.
В покое поровое давление тиксотропного промывочного раствора (т.е. давление, создаваемое дисперсионной средой и взвешенными частицами твердой фазы) снижается по мере того, как часть твердой фазы выпадает из взвешенного состояния и зависает на стенках скважины и колонны труб. Если поровое давление против кровли газоносного объекта сравняется с пластовым, отфильтровывание дисперсионной среды из раствора в эту часть горизонта прекратится. Отфильтровывание же в нижнюю часть объекта будет продолжаться, но уже под влиянием избыточного давления, равного примерно поровому давлению столба промывочной жидкости, расположенного только против газоносного объекта.
Фильтрат, поступивший в верхнюю часть газоносного объекта, под действием гравитации стекает к его подошве, а пластовый газ получает возможность фильтроваться в скважину и замещать дисперсионную среду раствора, отфильтровавшуюся в нижнюю часть объекта. Со временем против верхней части газоносного объекта может образовываться пачка газированной промывочной жидкости.
Если газоносный пласт трещиноват, то в процессе бурения нередко в трещины поступает значительное количество промывочной жидкости, которая смешивается затем в них с пластовым газом. При понижении давления в скважине (например, при подъеме бурильной колонны) часть поглощенной жидкости вместе с содержащимся в ней газом из трещин возвращается вновь в ствол. Возможно, что это одна их основных причин появления в скважине газированной промывочной жидкости.
После восстановления циркуляции по мере продвижения газированной промывочной жидкости к устью, в область пониженного давления, содержащийся в ней газ расширяется, объемное соотношение газ: жидкость возрастает. В результате давление, оказываемое столбом промывочной жидкости на стенки скважины и пластовые жидкости, и газы, уменьшается, особенно на сравнительно небольших глубинах (до 100-1500 м); разность между пластовым давлением и давлением в скважине увеличивается, что способствует интенсификации притока жидкостей и газа из пласта.
Как только порция газированной жидкости оказывается на глубине нескольких сот метров от негерметизированного устья скважины, происходит бурное расширение пузырьков газа. При этом часть промывочной жидкости из скважины может быть выброшена, а давление на стенки скважины скачкообразно уменьшится. Часто подобные выбросы переходят в открытое фонтанирование.
Приток газированных и слабогазированных пластовых жидкостей (обычно воды) обнаруживается по переливу через устье после прекращения промывки, а иногда даже во время ее и по увеличению объема жидкости в приемной емкости буровых насосов.
При газировании, помимо уменьшения плотности промывочной жидкости, выходящей из скважины, значительно возрастает условная вязкость. В случае притока пресной воды снижается плотность, условная вязкость и статическое напряжение сдвига, возрастают водоотдача и суточный отстой, из утяжеленного раствора нередко выпадает утяжелитель.
Если же поступает минерализованная вода, может произойти коагуляция раствора, сопровождающаяся ростом условной вязкости, статического напряжения сдвига, водоотдачи и суточного отстоя.
Газо-нефте-водопроявления не только нарушают процесс бурения, но и являются причиной аварий. При интенсивных проявления нередки случаи разрушения устья скважины и бурового оборудования, возникновения взрывов и пожаров.
Для предотвращения притока пластовых жидкостей необходимо:
1) герметизировать устье скважины превенторами, следить за их исправностью и работоспособностью, проверять надежность системы управления ими и своевременно устранять выявленные дефекты;
2) систематически контролировать качество промывочной жидкости, выходящей из скважины; с момента подхода к горизонту со значительно повышенным коэффициентом аномальности следует непрерывно контролировать плотность выходящего из скважины раствора и величину газосодержания;
3) применять промывочные жидкости с небольшой (не более 2-3 см3 за 30 минут), возможно, меньшим (но достаточным для удержания во взвешенном состоянии утяжелителя) статическим напряжением сдвига для вскрытия горизонтов со значительно повышенным коэффициентом аномальности (особенно газоносных);
4) увеличивать плотность промывочной жидкости в скважине до уровня, достаточного для поддержания небольшого избытка давления в скважине над пластовым, но обязательно меньшего того, при котором возможно расслоение (или разрыв) пород и поглощение раствора, перед вскрытием горизонтов с повышенным коэффициентом аномальности;
5) тщательно дегазировать промывочную жидкость, выходящую из скважины; в случае значительного увеличения газосодержания целесообразно приостановить углубление скважины и, не прекращая промывки, заменить газированную жидкость свежей с повышенной плотностью;
6) иметь на буровой запас промывочной жидкости того качества, которое требуется для вскрытия горизонтов с повышенным коэффициентом аномальности, в количестве не менее двух-трех объемов скважины;
7) доливать в скважину промывочную жидкость при подъеме колонны труб с таким расчетом, чтобы уровень ее всегда находился у устья;
8) установить в нижней части колонны обратный клапан;
9) не допускать длительных простоев скважины без промывки; при СПО необходимы промежуточные промывки продолжительностью 1-1,5 цикла через каждые 500-1000 м.
Нефтегазопроявления происходят в основном при снижении гидростатического давления бурового раствора на пласт и аномально высоких пластовых давлениях.
Основными методами предупреждения нефтегазопроявлений являются:
- увеличение давления на пласт путем повышения плотности раствора;
- снижение до минимально допустимых значений вязкости и СНС бурового раствора при вскрытии продуктивных и водоносных горизонтов;
- обеспечение на буровых запаса химических реагентов и утяжелителей не менее чем на 5 суток перед вскрытием продуктивных или водоносных горизонтов;
- постоянный контроль плотности , вязкости, СНС и содержания газа при подходе в процессе бурения к кровле продуктивных и водоносных горизонтов, а также при бурении после их вскрытия; необходимо также систематически следить за изменением уровня жидкости в приемных емкостях;
- переход на утяжеленный буровой раствор за 50 метров до кровли продуктивного или водоносного горизонта при вскрытии пластов с аномально высокими пластовыми давлениями; бурение, промывка и проработка необходимы при максимально возможной подаче насосов.
Основными методами ликвидации нефтегазопроявлений являются:
- усиление промывки скважины и увеличения давления на вскрытый пласт путем утяжеления бурового раствора, вводом утяжелителя в циркуляционную систему, а не порциями, при одновременной дегазации раствора (ввод пеногасителя, снижение СНС, пропуск раствора через дегазатор);
- задавка тампонажного раствора в межколонное пространство через перфорационные в колонне отверстия;
- замена всего объема раствора в скважине свежим при невозможности дегазации, а также при незначительном попадании нефти, так как падает плотность и возрастает вязкость раствора;
- цементирование при закрытом привенторе с созданием максимально допустимого избыточного давления в межколонном пространстве в случае возникновения нефтегазопроявлений в процессе цементирования обсадных колонн;
- установка силикатных ванн при проявлении пластовой вод, силикат натрия при взаимодействии с солями двух- и поливалентных металлов образуют труднорастворимые гидросиликаты кальция, магния и других металлов, что способствует быстрой кольматации пор пласта.
В момент установки силикатной ванны водоносный пласт должен принимать, а не проявлять. Это может быть достигнуто созданием необходимого противодавления при изоляции поглощающих пластов либо установкой пакера или цементных мостов. При силикатной ванне против водоносного пласта давление должно быть еще повышено при закрытом привенторе. Вязкость силикатного раствора должна быть 20-30 с, а бурового раствора – в 4-5 раз выше. Спустя 2-4 часа после установления постоянного давления испытывают скважину, постоянно снижая давление на пласт.