Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
гидравлика.doc
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
1.22 Mб
Скачать

3.2 Подготовка к лабораторной работе

3.2.1 Изучить материал по теме данной работы в настоящем пособии, а также в рекомендованной литературе ([1], С. 39-45; [2] С.42-49).

3.2.2 Выучить определения основных понятий и терминов темы (Приложение Б).

Основные термины и понятия:

– внутренняя задача гидродинамики;

– вязкий подслой;

– вязкость;

– вязкость динамическая;

– вязкость кинематическая;

– вязкость турбулентная;

– живое сечение потока;

– идеальная жидкость;

– ламинарный режим;

– масштаб турбулентности;

– объемный расход;

– пограничный слой;

– смоченный периметр;

– средняя скорость движения жидкости;

– турбулентный режим;

– эквивалентный диаметр.

3.3 Теоретические сведения

3.3.1 Режимы движения реальной жидкости

Опыты показывают, что любой вид движения вязкой жидкости может иметь два режима: ламинарный (слоистый) и турбулентный (вихревой).

Ламинарным называется такой режим движения жидкости, при котором в любой точке потока отсутствуют пульсации скорости и давления. При таком режиме движения уровни жидкости в пьезометрических трубках, присоединенных к каналу, в котором движение установившееся, остаются неизменными во времени. При движении жидкости в ламинарном режиме отдельные слои потока имеют разную скорость (рисунок 3.1а), и как бы скользят друг относительно друга.

Рисунок 3.1 – Режимы движения жидкостей: ламинарный (а)

и турбулентный (б)

Турбулентным называется режим движения жидкости, при котором в центральной части потока (ядре) (рисунок 3.1 б) и скорость, и давление пульсируют во времени относительно некоторого значения. Поэтому уровень жидкости в пьезометрической трубке, присоединенной к каналу, колеблется относительно некоторого среднего положения. При движении жидкости в турбулентном режиме в ядре потока наряду с основным продольным перемещением жидкости вдоль канала имеют место поперечные перемещения и вращательное вихревое движение отдельных объемов потока. Такой характер движения можно наблюдать, вводя в поток бесцветной жидкости, например воды, подкрашенную струйку. Напротив, в весьма тонком слое жидкости, непосредственно прилегающем к внутренней поверхности канала, движение является ламинарным, т.е. без перемешивания, пульсации, скорости и давления.

3.3.2 Основные характеристики турбулентного потока

Структура турбулентного потока определяется скоростью его движения, физическими свойствами жидкости, формой и размерами ограничивающих поток стенок канала и др.

Отдельные элементы турбулентного потока – вихри – совершают хаотические неустановившиеся движения. Вихрь – это группа частиц, вращающихся вокруг одной мгновенной оси с одинаковой угловой скоростью. В процессе турбулентного течения вихри непрерывно возникают и распадаются. Глубина их проникновения до разрушения называется масштабом турбулентности. Масштаб турбулентности во многом определяется внешними условиями течения (например, диаметром трубопровода или канала).

Вихри пульсируют относительно их среднего положения в текущей жидкости. Аналогично пульсирует и мгновенная скорость в данной точке потока. Беспорядочное перемещение вихрей приводит к интенсивному перемешиванию жидкости по сечению потока. Пульсации – наиболее характерный признак турбулентности.

Одним из свойств турбулентного потока является турбулентная вязкость; в отличие от молекулярной вязкости она зависит от всех параметров, характеризующих турбулентность, поэтому средняя турбулентная вязкость потока значительно превосходит молекулярную вязкость.

Турбулентный поток условно подразделяют на ядро и пограничный слой, в котором происходит переход турбулентного движения в ламинарное.

Н а рисунке 3.2 изображена модель структуры турбулентного потока.

Рисунок 3.2 – Модель структуры поперечного сечения турбулентного потока

График профиля скорости (рисунок 3.2) позволяет выявить несколько областей, на которые можно разделить течение в канале:

а) вязкий подслой; изменение средней скорости определяется значением коэффициента молекулярной вязкости практически линейно, как и в ламинарном потоке;

б) переходный слой; вязкие и турбулентные напряжения сравнимы по величине; происходит резкое затухание турбулентности;

в) полностью турбулентный слой; на течение еще влияет эффект стенки, однако турбулентность развита уже в такой степени, что вязкими напряжениями можно пренебречь;

г) турбулентное ядро; поток полностью турбулентен; масштаб турбулентности обусловлен определяющим параметром канала (диаметром трубы).

Эти четыре области можно объединить следующим образом. Области 1 и 2 составляют вязкий слой – область вязкого течения (III), т.е. область, в которой вязкость играет значительную роль в возникновении трения. Области 3 и 4 образуют область полностью турбулентного течения (II). В этой области масштаб турбулентности не зависит от вязкости.

Области 1, 2 и 3 образуют пограничный слой – пристеночную область (I), в которой происходит переход турбулентного движения в ламинарное.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]