- •Глава 2. Основы расчета на прочность и определение потерь
- •Глава 3. Основы динамики механизмов …………………………92
- •Глава 4. Способы соединения деталей машин……………………125
- •Глава 5. Конструирование узлов и деталей машин (приборов)….160
- •1.1. Общие сведения о машинах и механизмах .
- •1.2. Понятие о надежности машин.
- •1.3. Надежность и ее оценка
- •1. 4. Условия работы машины и причины отказов.
- •1.5. Надежность машин при проектировании и эксплуатации.
- •Глава 2. Основы расчета на прочность и определение потерь
- •2. 1. Основные положения механики сплошных сред [2].
- •2.2. Теорема Гаусса - Остроградского.
- •2.3. Уравнения движения сплошной cреды.
- •2.4. Линейное упругое тело.
- •2.5. Основные понятия теории сопротивления материалов.
- •2.6. Напряженное и деформированное состояние в точке.
- •2.7. Сдвиг и кручение.
- •2.8. Изгиб.
- •2.9. Геометрические характеристики плоских сечений.
- •2.10. Поперечный изгиб.
- •2.11. Изгиб за пределами упругости.
- •2.12. Сложное сопротивление.
- •2.13. Перемещения в брусе.
- •2.14. Расчет статически неопределимых стержневых систем.
- •2.15. Расчет оболочек вращения.
- •2.16. Пружины.
- •2.17. Устойчивость стержней.
- •2.18. Контактные взаимодействия при относительном
- •2.19. Основные понятие о взаимозаменяемости
- •2.20. Рычажные и кулачковые механизмы.
- •2.21. Роботы в технике.
- •Глава 3. Основы динамики механизмов.
- •3.1. Общие положения.
- •3.2. Колебательные перемещения системы с одной
- •3.3. Колебания в системе при наличии упругой связи.
- •3.4. Исходные уравнения колебаний мощности
- •3.5. Основные методы анализа динамики
- •3.6. Динамические особенности силовых магистралей.
- •3.7. Влияние на динамические свойства силовой магистрали
- •3.8. Вынужденные колебания.
- •Глава 4. Способы соединения деталей машин.
- •4.1. Резьбовые соединения.
- •4.1.1. Формы резьбы.
- •4.1.2. Теория винтовой пары.
- •4.1.3. Расчет резьбы на прочность.
- •4.2. Соединения деталей с помощью заклепок и точечного
- •4.2.1. Способы соединения
- •4.2.2. Расчет на прочность.
- •4.3.Сварные соединения.
- •4.4. Шпоночные и зубчатые (шлицевые) соединения.
- •4.5. Общетехнические соединения с натягом.
- •Соединения труб с доской трубной в теплообменных аппаратах.
- •4.6.1. Гидравлическая раздача
- •4.6.3. Взрыв
- •4.6.4. Использование роликовых вальцовок.
- •Глава 5. Конструирование узлов и деталей машин
- •5.1. Машины (приборы) и их основные функции.
- •5.2. Критерии работоспособности и влияющие на них
- •5.3. Условия работы устройств при изготовлении теплообменных аппаратов.
- •5.3.1. Взаимодействие режущего инструмента с заготовкой.
- •5.3.2. Использование тормозов.
- •5.3.3. Колебания при работе роликовых вальцовок.
- •5.3.4. Колебания скоростей и сил, действующих в кулачковом
- •5.3.5. Динамические особенности двигателей.
- •Нагрузки, действующие на машины, системы
- •5.3.7. Динамические свойства машин (приборов).
- •5.3.8. О колебаниях в станке глубокого сверления
- •5.4. Зубчатые передачи. Основные понятия
- •5.5. Цилиндрические зубчатые передачи [4].
- •5.6. Косозубые и шевронные цилиндрические передачи
- •5.7. Конические зубчатые передачи.
- •5.8. Передаточные отношения одноступенчатых и
- •5.9. Материалы и термообработка.
- •5.10. Фрикционные передачи.
- •5.11. Червячные передачи.
- •5.12. Планетарные передачи.
- •5.13. Конструкции зубчатых колес и некоторых деталей редукторов.
- •5.14. Ременные передачи [4]
- •5.15. Цепные передачи
- •5.16.Валы.
- •5.17. Подшипники.
- •5.17.2. Подшипники качения.
- •5.18. Муфты.
- •5.18.1. Муфты глухие(рис. 5.94) .
- •5.18.2. Муфта фланцевая (рис. 5.95) .
- •5.18.3. Муфты компенсирующие жесткие.
- •5.18.6. Муфты управляемые.
- •5.18.7. Муфты автоматические.
- •II. Выбор материалов и расчет допускаемых напряжений.
- •III. Расчет зубчатой передачи.
- •IV. Расчет валов, выбор и проверочный расчет подшипников, расчет
- •II. Выбор материалов и расчет допускаемых напряжений.
- •III. Расчет зубчатой передачи.
- •IV. Расчет входного вала.
- •V. Расчет выходного вала.
- •I. Задание
- •II. Выбор материалов и расчет допускаемых напряжений.
- •III. Расчет зубчатой пары.
- •I. Задание.
- •II. Выбор материалов.
- •III. Расчет зубчатой передачи.
5.7. Конические зубчатые передачи.
Применяются в передачах, где оси валов пересекаются под некоторым углом . Они сложнее цилиндрических в изготовлении и монтаже. Для нарезания требуются специальные станки и инструмент.
Кроме допусков на размеры зубьев здесь необходимо выдерживать допуски на углы , 1, 2 (рис.5.38), а при монтаже обеспечивать совпадение вершин конусов. Выполнить коническое зацепление с той же степенью точности, что и цилиндрические значительно сложнее. Пересечение осей валов затрудняет размещение опор. Обычно одно из коническиъх колес располагается консолью. При этом увеличиваются неравномерность распределения нагрузки по длине зуба. В коническом зацеплении действую осевые силы, усложняющие конструкцию опор. Из-за всего этого нагрузочная способность конической зубчатой передачи составляет около 85% от цилиндрической.
Рис. 5.38
Геометри-ческие осо-бенности прямозубого конического зацепления
Аналогами начальных и делительных цилиндров цилиндрических передач в конических являются начальные и делительные конусы с углами 1, 2.
На рис. 5.39 показан общий вид зацепления.
Рис. 5.39
Общий вид конического зацепления
При коэффициенте смещения инструмента x1+ +x2= 0 начальные и делительные конусы совпадают.
Конусы, образующие которых перпендикулярны образующим делительных конусов называют дополнительными конусами. Сечение зубьев дополнительным конусом называют торцовым сечением. Различают внешнее, внутреннее и среднее торцовые сечения. Размеры, относящиеся к внешнему торцовому сечению сопровождают индексом “e”, например de. Размеры в среднем сечении обозначают индексом “m”, например dm, и прменяют при силовых расчетах.
Используются следующие характерные размеры:
Re= Rm+ 0,5b- внешнее конусное расстояние (Rm - среднее конусное расстояние); de= dmRe/ Rm; mte= mtmRe/ Rm- торцовый модуль зацепления по внешнему дитаметру (mtm - торцовый модуль зацепления по среднему дитаметру). Для прямозубых передач торцовое “t” и нормальное “n” сечения совпадают. При этом значения mte= mnе округляют до стандартного.
Как и у цилиндрических передач, передаточное число равно
u= d2/d1= z2/ z1.
Кроме того, выразив d1 и d2 через конусное расстояние R и углы конусов 1 и 2 , получим
u= sin2/ sin1, (5-56)
а при = 1 + 2 = 90
u= tg2= ctg1. (5-57)
Силы в зацеплении определяются следующими соотношениями:
F
t=
2Mкр1/
dm1-
окружная сила;
Fn= Ft/ cos - нормальная сила; (5-58)
Fr = Ft tg cos1 - радиальная сила;
Fa = Ft tg sin1 - осевая сила.
Для упрощения расчетов коническое колесо приводят к эквивалентному прямозубому цилиндрическому. Диаметры эквивалентных колес:
de1= de1/ cos 1; de2= de2/ cos 2. (5-59)
Для проектного расчета используют формулу
de2= 1,7 { EnpMкр1КН u/ [H [H]2 (1-Kbe)Kbe]}1/3, (5-60)
где H =0,85- опытный коэффициент; Kbe - коэффициент ширины зубчатого венца относительно внешнего конусного расстояния. Часто принимают Kbe = 0,285, тогда
de2 2,9{ EnpMкр1КН u/ [H [H]2 }1/3. (5-61)
Далее рассчитывают диаметр шестерни по среднему сечению
dm1= de2 (1- 0,5 Kbe)/u (5-62)
и толщину шестерни
bw= 0,5Kbe(u2+1)1/2/u..
Контактные напряжения прямозубых конических передач вычисляют по формуле
H= 1,18{EnpMкр1КН (u2+ 1)1/2/u/(Hd2m1bwsin2)}1/2 [H], (5-63)
Конические колеса могут иметь непрямые зубья. Наиболее распространены колеса с косыми или тангенциальными зубьями и колеса с круговыми зубьями (рис.5.40).
Чаще применяются круговые зубья.
Рис. 5.40.
Колеса с непрямыми зубьями
а) тангенциальные зубья;
б) круговые зубья.
а) б)
Учитывая особое значение выбора m и z, для конических передач с прямозубым и круговым зубом разработаны специальные рекомендации. Сначала по формуле (5-61) определяют de2. Затем из графиков в зависимости от de1= de2/u и u определяют значение z’.
После этого для твердостей колес, не превышающих 350НВ, вычисляют число зубьев шестерни z1= 1,6 z’. В случае более твердых колес предлагаются другие зависимости [4]. В общем случае рекомендуют число зубьев zmin= 17. При этом отсутствует подрезание.
После этого определяется модуль
mm= dm1/z1, (5-64)
на основании которого по ряду выбирается ближайшее значение.
В конических передачах с u>1 для повышения сопротивления заеданию рекомендуют выполнять шестерню с положительнывм смещением (x1> 1), а колесо с отрицательным х2= - х1, причем
x1= xn1 2(1- u-2)(cos3n/z1)1/2.
Напряжения при изгибе рассчитываются с помощью соотношения
F= YFFtKF/(Fbwmm) [F], (5-65)
где F = 0,85; YF - коэффициент формы зуба [4]; KF= KFKF- коэффициент нагрузки определяется по графикам.
Суть работы непрямого зуба такая же, как и у косозубых цилиндрических передач. При этом силы зацепления определяются с помощью соотношений:
F
t=
2Mкр1/
dm1-
окружная сила;
Fr = (Ft /cosn)(tg cos1 sinnsin1)- радиальная сила; (5-66)
Fa = (Ft /cosn)(tg sin1 sinncos1)- осевая сила.
Расчет прочности выполняют по параметрам биэквивалентных цилиндрических прямозубых колес:
dn= de/ (cos cos2n) - диаметр;
zn= z/ (cos cos2n)- число зубьев.
Для круговых зубьев контактные напряжения вычисляют по специальным формулам.
