- •Глава 2. Основы расчета на прочность и определение потерь
- •Глава 3. Основы динамики механизмов …………………………92
- •Глава 4. Способы соединения деталей машин……………………125
- •Глава 5. Конструирование узлов и деталей машин (приборов)….160
- •1.1. Общие сведения о машинах и механизмах .
- •1.2. Понятие о надежности машин.
- •1.3. Надежность и ее оценка
- •1. 4. Условия работы машины и причины отказов.
- •1.5. Надежность машин при проектировании и эксплуатации.
- •Глава 2. Основы расчета на прочность и определение потерь
- •2. 1. Основные положения механики сплошных сред [2].
- •2.2. Теорема Гаусса - Остроградского.
- •2.3. Уравнения движения сплошной cреды.
- •2.4. Линейное упругое тело.
- •2.5. Основные понятия теории сопротивления материалов.
- •2.6. Напряженное и деформированное состояние в точке.
- •2.7. Сдвиг и кручение.
- •2.8. Изгиб.
- •2.9. Геометрические характеристики плоских сечений.
- •2.10. Поперечный изгиб.
- •2.11. Изгиб за пределами упругости.
- •2.12. Сложное сопротивление.
- •2.13. Перемещения в брусе.
- •2.14. Расчет статически неопределимых стержневых систем.
- •2.15. Расчет оболочек вращения.
- •2.16. Пружины.
- •2.17. Устойчивость стержней.
- •2.18. Контактные взаимодействия при относительном
- •2.19. Основные понятие о взаимозаменяемости
- •2.20. Рычажные и кулачковые механизмы.
- •2.21. Роботы в технике.
- •Глава 3. Основы динамики механизмов.
- •3.1. Общие положения.
- •3.2. Колебательные перемещения системы с одной
- •3.3. Колебания в системе при наличии упругой связи.
- •3.4. Исходные уравнения колебаний мощности
- •3.5. Основные методы анализа динамики
- •3.6. Динамические особенности силовых магистралей.
- •3.7. Влияние на динамические свойства силовой магистрали
- •3.8. Вынужденные колебания.
- •Глава 4. Способы соединения деталей машин.
- •4.1. Резьбовые соединения.
- •4.1.1. Формы резьбы.
- •4.1.2. Теория винтовой пары.
- •4.1.3. Расчет резьбы на прочность.
- •4.2. Соединения деталей с помощью заклепок и точечного
- •4.2.1. Способы соединения
- •4.2.2. Расчет на прочность.
- •4.3.Сварные соединения.
- •4.4. Шпоночные и зубчатые (шлицевые) соединения.
- •4.5. Общетехнические соединения с натягом.
- •Соединения труб с доской трубной в теплообменных аппаратах.
- •4.6.1. Гидравлическая раздача
- •4.6.3. Взрыв
- •4.6.4. Использование роликовых вальцовок.
- •Глава 5. Конструирование узлов и деталей машин
- •5.1. Машины (приборы) и их основные функции.
- •5.2. Критерии работоспособности и влияющие на них
- •5.3. Условия работы устройств при изготовлении теплообменных аппаратов.
- •5.3.1. Взаимодействие режущего инструмента с заготовкой.
- •5.3.2. Использование тормозов.
- •5.3.3. Колебания при работе роликовых вальцовок.
- •5.3.4. Колебания скоростей и сил, действующих в кулачковом
- •5.3.5. Динамические особенности двигателей.
- •Нагрузки, действующие на машины, системы
- •5.3.7. Динамические свойства машин (приборов).
- •5.3.8. О колебаниях в станке глубокого сверления
- •5.4. Зубчатые передачи. Основные понятия
- •5.5. Цилиндрические зубчатые передачи [4].
- •5.6. Косозубые и шевронные цилиндрические передачи
- •5.7. Конические зубчатые передачи.
- •5.8. Передаточные отношения одноступенчатых и
- •5.9. Материалы и термообработка.
- •5.10. Фрикционные передачи.
- •5.11. Червячные передачи.
- •5.12. Планетарные передачи.
- •5.13. Конструкции зубчатых колес и некоторых деталей редукторов.
- •5.14. Ременные передачи [4]
- •5.15. Цепные передачи
- •5.16.Валы.
- •5.17. Подшипники.
- •5.17.2. Подшипники качения.
- •5.18. Муфты.
- •5.18.1. Муфты глухие(рис. 5.94) .
- •5.18.2. Муфта фланцевая (рис. 5.95) .
- •5.18.3. Муфты компенсирующие жесткие.
- •5.18.6. Муфты управляемые.
- •5.18.7. Муфты автоматические.
- •II. Выбор материалов и расчет допускаемых напряжений.
- •III. Расчет зубчатой передачи.
- •IV. Расчет валов, выбор и проверочный расчет подшипников, расчет
- •II. Выбор материалов и расчет допускаемых напряжений.
- •III. Расчет зубчатой передачи.
- •IV. Расчет входного вала.
- •V. Расчет выходного вала.
- •I. Задание
- •II. Выбор материалов и расчет допускаемых напряжений.
- •III. Расчет зубчатой пары.
- •I. Задание.
- •II. Выбор материалов.
- •III. Расчет зубчатой передачи.
4.5. Общетехнические соединения с натягом.
Соединение 2-х деталей (рис. 4.26) можно осуществить посредством натяга, когда сопрягаемые поверхности деталей с некоторым усилием прижимаются друг к другу. Таким способом могут соединяться вал и шестерня, вал с кольцом подшипника, вал со шпинделем фрезерного станка и т.п.
Рис. 4.26.
Посадка с натягом
К подобным общетехническим соединениям предъявляются в основном требования по прочности.
Сборка узла может быть продольной и поперечной.
Продольная сборка.
Сопрягаемые поверхности вала и втулки выполняются таким образом, что в свободном состоянии при нормальных условиях их невозможно соединить. В этом случае диаметр вала может быть несколько больше диаметра посадочного отверстия втулки.
Сборка производится посредством силового «одевания» деталей в осевом направлении с помощью пресса, кувалды, молотка. При этом микронеровности посадочных поверхностей сминаются и частично срезаются. Такой метод может привести к неравномерной деформации (короблению) деталей, повреждению их торцев. Кроме того, в процессе продольной сборки возможны задиры сопрягаемых поверхностей.
Этот метод позволяет обеспечить требуемые показатели прочности соединения, однако из-за возможных задиров и деформации деталей герметичность будет невысока. Применяется для сборки редукторов и т.п.
Поперечная сборка.
1. Сопрягаемые поверхности вала и втулки выполняются таким образом, что в свободном состоянии при нормальных условиях их невозможно соединить. Поэтому для выполнения сборки одну деталь, охватываемую, охлаждают, а другую, охватывающую,- нагревают.
Охлаждение может осуществляться твердой углекислотой (Т= =- 79С), жидким воздухом (Т= - 196С), иногда снегом.
Нагрев может производиться в печах, индукционным способом, горелкой и т.п.
Так как при этом размеры деталей изменяются (от нагрева увеличиваются, а от охлаждения – уменьшаются), то после выравнивания температур между деталями образуется натяг. Разность температур должна соответствовать выражению
Т= (Nmax+ S0)/(d),
где Nmax - наибольший натяг посадки; S0 - минимально необходимый зазор; - температурный коэффициент линейного расширения (для стали и чугуна = 10-51/град.); d - номинальный диаметр посадки.
2. Для изготовления узла крепления деталь, размещенная внутри, каким-либо способом раздается, т.е. увеличиваются ее внутренний и наружный диаметры. Это можно осуществить с помощью конуса, клина. Однако следует помнить, что подобная деформация, как и при продольной сборке, может привести к задирам поверхностей контакта.
Условия прочности соединений с натягом:
при осевой нагрузке
KFa p dl, (4-52)
при крутящем моменте
KM pd2l/2, (4-53)
при совместном действии осевой и крутильной нагрузок
K[F2a+ (2M кр/d)2]1/2 p dl, (4-54)
при изгибающей нагрузке (не должно раскрыться соединение)
Mu 0,2p dl2, (4-55)
где К= 1,5…2- коэффициент запаса; p= H/[d(C1E-11+ C2E-12)]- контактное давление (напряжение); C1= (d2+ d21)/( d2- d21)- 1; C2= (d22 + +d2)/( d22 - d2)+ 2; E1,E2,1, 2- модули упругости и коэффициенты Пуассона вала и втулки; = 0,08..0,15- коэффициент трения между стальными или чугунными деталями (надо учитывать, что при длительном стоянии величина этого коэффициента может существенно до =1 возрасти.)
Натяг H, входящий в выражение для определения контактного напряжения р в соединениях вала и втулок, выполняемых продольным способом, определяют по минимальному табличному или вероятностному натягу с поправкой на срезание и сглаживание шероховатости
H= Hmin- u= Hmin – 1,2(Rz1+ Rz2) (4-56)
или с помощью выражения
H= Hmin+ 2k(Rz1+ Rz2), (4-57)
где Rz1, Rz2 - шероховатости деталей; k= 0,5…0,7 – в случае продольной сборки; k= 0,3…0,5 – в случае поперечной сбрки; Hmin=dвт Es - dвei.
В случае изгибающей нагрузки условие прочности для втулки записывается в форме
2рd22/(d22- d2) m2- предел текучести втулки;
для вала
2рd2/(d2- d21 ) m1- предел текучести вала.
В соединениях с натягом, когда пластически деформируется только тонкая поверхность контакта, а напряжения в теле детали не превышают предела пропорциональности, внутренний диаметр отверстия вала уменьшается
о= 2p d12d/[E1(d2- d21)], (4-58)
а наружный диаметр втулки увеличивается
в= 2p d2d2 /[E2(d2 2- d21)], (4-59)
Такие соединения достаточно просты и технологичны, однако их нагрузочная способность зависит от многих факторов, трудно поддающихся учету.
Соединения посадкой на конус (рис.4.27).
В таком способе имеет место одновременно продольная и поперечная сборка.
Подобные соединения применяют для закрепления деталей на концах валов. Давление на конической поверхности образуется с помощью затяжки гайкой. Это соединение легко демонтируется и монтируется. Для передачи заданного крутящего момента должно выполняться условие
Fзат0,5dc p /(sin + cos ) KT. (4-60)
Рис.4.27
Посадка на конус.
Часто принимают стандартную конусность Кк =1/10. При этом коэффициент запаса К= 1,2…1,5; коэффициент трения = 0,11…0,13; = 251’40”. За расчетный момент принимают его максимальное значение; усилие затяжки рассчитывают с помощью соотношения
Fзат= 2 Mзат/ { d2 [(Dc p/d2)+ tg(+ )]}, (4-61)
где d2 - диаметр резьбы вала; Dc p - средний диаметр опорного торца гайки; - коэффициент трения на торце гайки; - угол подъема резьбы гайки; - угол трения в резьбе; Мзат= (150…200)15d2 [Hмм].
Если условие (4-60) не соблюдается, то соединение усиливают шпонкой. Расчет шпоночного соединения выполняют по полному моменту нагрузки. Влияние посадки учитывают, как в прессовых посадках при выборе допускаемого напряжения.
В таких соединениях могут применяться также стандартные конусы Морзе № 1,2….
При изготовлении конических соединений должен соблюдаться принцип совпадения сопрягаемых поверхностей.
