
- •1.Введение.
- •2. Общие сведения. Единицы измерения влажности газов.
- •2.1 Величины, характеризующие концентрацию водяного пара.
- •2.2 Характеристики влажностных отношений.
- •2.3 Температура точки росы.
- •2.4 Относительная влажность.
- •3. Методы измерения влажности газов.
- •4. Гигрометры с кулонометрическими датчиками.
- •5. Заключение.
- •6.Список литературы.
1.Введение.
Методы измерения влажности твердых материалов, жидкостей и газов, основанные на преобразовании влажности в другую физическую величину с использованием современной измерительной техники, насчитывают всего несколько десятилетий; некоторые из них были разработаны в последние годы.
Однако измерения влажности различных материалов и средств во многих отраслях народного хозяйства и целом ряде областей научных исследований заняли важное место в современной аналитической измерительной технике. Информация о влажности используется в многочисленных автоматических системах (системы управления и информационно-измерительные).
В данном реферате я постараюсь отразить современный уровень знаний в области измерений влажности электрическими методами. Для этого использован опыт разработки и применения гигрометров (приборов для измерения влажности газов) различных типов.
Необходимость контроля влагосодержания жидких топлив для ракет, содержащих сильные окислители, вызвана опасностью коррозии деталей, соприкасающихся с топливом. Аналогичные ограничения предельного допустимого влагосодержания действительны и для хладагентов современных холодильных установок.
В промышленности актуальны задачи контроля и регулирования влажности воздуха в складских и производственных помещениях, связанных с гигроскопическим сырьем, полуфабрикатами и готовыми изделиями (пищевая, текстильная, бумажная, полиграфическая, кино-фотоматериалов и др. отрасли промышленности), на некоторых машинно- и приборостроительных предприятиях (для предотвращения коррозии изделий, создания необходимых условий при сборке и испытаниях приборов), в промышленности полупроводниковых материалов и приборов, электронной и т. д. Поддержание определенной влажности необходимо в ряде биологических процессов. Аналогичные задачи возникают и в сельском хозяйстве — при выращивании растений в закрытом грунте (теплицы, оранжереи), в животноводстве и птицеводстве — в инкубаторах и помещениях для содержания скота, продуктивность которого зависит от влажности окружающего воздуха, в зернохранилищах и помещениях для хранения и дозревания овощей и фруктов.
Технологические процессы химической промышленности выдвигают задачи контроля и регулирования влагосодержания чистых газов: азота, водорода, кислорода, метана и др., во многих случаях необходимо контролировать с большой точностью степень осушки воздуха и различных газов. Аналогичные задачи выдвигают современные электровакуумная промышленность и металлургия (черная, цветная, в том числе редких металлов и полупроводников); в качестве примеров можно указать на контроль влажности доменного дутья и на контроль влажности водорода при производстве твердых сплавов. Влагосодержание водорода и других инертных газов доводится до ничтожно малых величин и в процессах термической обработки некоторых металлов и сплавов (термообработка в контролируемых печных атмосферах).
Общеизвестно влияние влажности газов, транспортируемых по газопроводам, на условия эксплуатации и коррозию трубопроводов. От влажности газообразного топлива зависит его теплотворная способность.
Не менее обширен круг задач, связанных с измерениями влажности в научных исследованиях в самых различных областях, как, например, медицина и биология, биохимия и физическая химия, физиология растений, метеорология и аэрология, почвоведение и агрохимия, тепло- и массообмен и ряд технических наук (теория и техника процессов сушки, гидрология, гидротехника и мелиорация, различные области строительства и т. д.).
Приведенный перечень далеко не исчерпывает всех применений измерений влажности в науке и технике и лишь характеризует обширную сферу применения этих измерений с которой связаны следующие особенности:
а) большое научное, техническое и экономическое значение для жизни общества этой отрасли измерительной техники;
б) широкий диапазон задач и разнообразие требований, предъявляемых к техническим средствам измерения влажности.
Экономический эффект, который может получить народное хозяйство от повсеместного и достаточно точного контроля влажности используемых материалов, воздуха и газов, чрезвычайно велик. Оценить его в денежном выражении трудно, в частности потому, что в большинстве случаев экономия достигается в результате не самого получения информации о влажности, а целенаправленного использования этой информации.
В качестве основных источников экономии, обусловленной получением информации о влажности или усовершенствованием этой информации, могут рассматриваться:
а) устранение или сокращение непроизводительных материальных потерь, обусловленных отсутствием информации о влажности, ее неточностью или несвоевременным получением.
Измерения влажности имеют многолетнюю историю. Устройства для количественной оценки влажности воздуха появились уже в XV в., а создание волосного гигрометра можно отнести к 1783 г. Аналитический способ определения влагосодержания твердых тел взвешиванием до и после высушивания образца применяется уже на протяжении многих десятилетий.
Однако в связи с научно-техническим прогрессом коренным образом изменились в последние десятилетия задачи измерений влажности и требования, предъявляемые к ним.
Важнейшими из этих требований явились уменьшение длительности определения и возможность выполнения всех или основных операций измерения без участия человека, т. е. переход от ручного аналитического контроля к методам современной измерительной техники.
Влагометры и гигрометры нашли применение в системах управления и измерительно-информационных различных отраслей промышленности, сельского хозяйства, строительства и в научных исследованиях, а гигрометры— также в дистанционных информационно-измерительных системах метеорологии и аэрологии. Автоматические метеорологические станции, радиозонды, самолеты— летающие лаборатории, метеорологические ракеты и спутники потребовали новых, более совершенных средств измерения влажности атмосферы. С этим связаны новые или повышенные качества, которыми должны обладать влагомеры и гигрометры и особенно их датчики как составные элементы автоматических систем: высокая надежность и связанное с ней минимальное количество движущихся частей, совершенные динамические характеристики, взаимозаменяемость, минимальные габариты и вес.
Измерения влагосодержания газов необходимо выполнять в пределах от микроконцентраций — одной или нескольких миллионных долей (контроль влажности чистых газов, современные процессы синтеза полимеров) — до насыщения.
Для гигрометрии характерны изменения в широком диапазоне и других параметров объекта измерения — температуры, давления (для газов — от нескольких миллиметров ртутного столба до сотен атмосфер), наличия примесей и загрязнений.
Рассмотрим подробнее некоторые задачи измерений влажности, относящиеся к наиболее сложным:
а) Для научных исследований во многих областях, а также для решения некоторых практических задач необходимы локальные измерения влажности твердых тел или газов, т. е. получение информации не об интегральных значениях влажности, а об ее распределении в отдельных точках исследуемой среды.
б) Измерение влажности воздуха и газов при низких отрицательных температурах. Указанная задача — одна из наиболее сложных в метеорологии — сейчас актуальна для холодильной промышленности и для ряда областей науки.
в) Контроль и регулирование влажности паровоздушной смеси или газов при высоких температурах. Эта задача возникает в хлебопекарных печах и обжарочных камерах в пищевой промышленности, в промышленных печах, например в печах для закалки и обжига некоторых качественных сталей, на тепловых электростанциях (контроль влажности дымовых газов) и т. д.
В ряде случаев задача дополнительно усложняется наличием в контролируемой газовой среде значительного количества взвешенных частиц (например, контроль влажности дымовых газов для коптильных установок).
г) Измерение влагосодержания газов, находящихся в замкнутых оболочках при высоких давлениях; в этих условиях необходимо учитывать влияние сжатия газа на его физические свойства, в частности на максимальную возможную упругость водяного пара.
Сложность и разнообразие задач делают весьма проблематичной возможность создания универсального метода измерения влажности даже для тел одного агрегатного состояния. Рассмотренные задачи невозможно решить с помощью традиционных методов и технических средств гигрометрии.
Создание и применение «инструментальных» методов оказали большое влияние на теоретические основы и технику измерений влажности. Эти измерения превратились в одну из областей современных измерений состава и свойств материала. Разработка и выпуск влагомеров и гигрометров представляет собой сейчас одну из отраслей аналитического приборостроения. Для нее характерны направления развития, общие для современного приборостроения: миниатюризация, типовое проектирование на блочно-модульной базе