
- •Аналитическая геометрия. Системы координат.
- •Прямоугольная (декартова) система координат.
- •Цилиндрическая и сферическая системы координат.
- •Связь цилиндрической и декартовой прямоугольной системами координат.
- •Связь сферической системы координат с декартовой прямоугольной.
- •Уравнение линии на плоскости.
- •Уравнение прямой на плоскости.
- •Уравнение прямой по точке и вектору нормали.
- •Уравнение прямой по точке и направляющему вектору.
- •Уравнение прямой, проходящей через две точки.
- •Уравнение прямой по точке и угловому коэффициенту.
- •Уравнение прямой в отрезках.
- •Уравнение прямой, проходящей через данную точку перпендикулярно данному вектору.
- •П олярное уравнение прямой.
- •Нормальное уравнение прямой.
- •Основные задачи. Расстояние между двумя точками: Деление отрезка в данном отношении.
- •Площадь треугольника.
- •Угол между прямыми на плоскости.
- •Расстояние от точки до прямой.
- •Аналитическая геометрия в пространстве. Уравнение линии в пространстве.
- •Уравнение прямой в пространстве по точке и
- •Уравнение плоскости в пространстве. У равнение плоскости, проходящей через данную точку перпендикулярно данному вектору.
- •Общее уравнение плоскости.
- •Уравнение плоскости, проходящей через три дванные точки.
- •Уравнение плоскости в отрезках.
- •П усть пл-ть отсекает на осях Ох, Оу и Оz соответственно отрезки a, b и c, т.Е. Проходит через точки а(а,0,0), в(0,b,0) и с(0,0,с). Подставляя координаты этих точек в ур-ние, получаем:
- •. Раскрыв определитель и выполнив преобразования, имеем:
- •Нормальное уравнение плоскости.
- •Каноническое уравнение прямой.
- •Параметрическое уравнение прямой.
- •Уравнение прямой в пространстве, проходящей через две точки.
- •Условия параллельности и перпендикулярности плоскостей.
- •Расстояние от точки до плоскости.
- •Угол между прямыми в пространстве.
- •Условия параллельности и перпендикулярности
- •Условие, при котором две прямые лежат в одной плоскости.
- •Угол между прямой и плоскостью.
- •Условия параллельности и перпендикулярности прямой и плоскости в пространстве.
- •Пересечение прямой с плоскостью. Условие принадлежности прямой плоскости.
Аналитическая геометрия. Системы координат.
Любая точка на плоскости может быть однозначно определена при помощи различных координатных систем, выбор которых определяется различными факторами.
Способ задания начальных условий для решения какой – либо конкретной технической задачи может определить выбор той или иной системы координат. Для удобства проведения вычислений часто предпочтительнее использовать системы координат, отличные от декартовой прямоугольной системы. Кроме того, наглядность представления окончательного ответа зачастую тоже сильно зависит от выбора системы координат.
Определение. Под системой координат на плоскости понимают способ, позволяющий численно описать положение точки плоскости.
Прямоугольная (декартова) система координат.
П
рямоуголная
система координат задается двумя взаимно
перпендикулярными прямыми – осями, на
каждой из которых выбрано положительное
направление и задан единичный отрезок.
Ось ОХ наз. осью
абсцисс, ось
ОУ – осью
ординат.
Единичные векторы обозначают i
и j
(
).
Вектор ОМ называют радиусом-вектором
точки М.
Координатами
точки М в
системе ОХУ называются координаты
радиуса-вектора ОМ.
Полярная система координат.
Полярная система координат задается точкой О называемой полюсом, а лучом l – полярной осью.
С
уть
задания какой- либо системы координат
на плоскости состоит в том, чтобы каждой
точке плоскости поставить в соответствие
пару действительных чисел, определяющих
положение этой точки на плоскости. В
случае полярной системы координат роль
этих чисел играют расстояние точки от
полюса и угол между полярной осью и
радиус– вектором этой точки. Этот угол
называется полярным
углом.
Числа r и называются полярными координатами точки М, пишут М(r; ), при этом r называется полярным радиусом, - полярным углом.
Можно установить связь между полярной системой координат и декартовой прямоугольной системой, если поместить начало декартовой прямоугольной системы в полюс, а полярную ось направить вдоль положительного направления оси Ох.
Т
огда
координаты произвольной точки в двух
различных системах координат связываются
соотношениями:
x =
rcos;
y = rsin;
x2
+
y2
= r2
П
r
=
.
Определяя величину ,
следует установить четверть, в которой
лежит искомый угол, и учесть, что
.
Цилиндрическая и сферическая системы координат.
Как и на плоскости, в пространстве положение любой точки может быть определено тремя координатами в различных системах координат, отличных от декартовой прямоугольной системы. Цилиндрическая и сферическая системы координат являются обобщением для пространства полярной системы координат.
Введем в пространстве
точку О и луч l,
выходящий из точки О, а также вектор
.
Через точку О можно провести единственную
плоскость, перпендикулярную вектору
нормали
.
Для введения соответствия между цилиндрической, сферической и декартовой прямоугольной системами координат точку О совмещяют с началом декартовой прямоугольной системы координат, луч l – с положительным направлением оси х, вектор нормали – с осью z.
z
М
h
0 x
r
M1
y
ОМ1
= r; MM1
= h;
Цилиндрическая и сферическая системы координат используются в тех случаях, когда уравнение кривой или поверхности в декартовой прямоугольной системе координат выглядят достаточно сложно, и операции с таким уравнением представляются трудоемкими. Представление уравнений в цилиндрической и сферической системе позволяет значительно упростить вычисления.
Если из точки М опустить перпендикуляр ММ1 на плоскость, то точка М1 будет иметь на плоскости полярные координаты (r, ).
Определение. Цилиндрическими координатами точки М называются числа (r, , h), которые определяют положение точки М в пространстве.
Определение. Сферическими координатами точки М называются числа (r,,), где - угол между и нормалью.