
- •1. Кинематика. Кинематика точки. Способы задания движения точки:
- •2. Скорость точки. Вектор скорости:
- •3. Ускорение точки. Вектор ускорения:
- •4. Опред-ие ск-ти и уск-ия точки при коор-ом способе задания дв-ия:
- •5. Опред-ие ск-ти и уск-ия точки при естественном способе задания дв-ия:
- •9. Равномерное и равнопеременное вращение:
- •10. Скорости и ускорения точек тела при вращательном движении:
- •11. Выражения скоростей и ускорений точек тела при вращательном движении в виде векторных произведений:
- •12. Плоскопараллельное движение твёрдого тела. Уравнение плоского движения. Разложение плоского движения на поступательное и вращательное:
- •13. Определение скоростей тела при плоском движении:
- •14. Теорема о проекциях скоростей двух точек тела:
- •15. Мгновенный центр скоростей. Теорема о существовании и единстве м.Ц.С.:
- •16. Определение скоростей точек тела с помощью м.Ц.С.:
- •17. Частные случаи определения м.Ц.С:
- •18. Опред-ие уск-ий точек тела при плоском движении:
- •19. М.Ц.У. Опред-ие ускорений точек тела с помощью м.Ц.С.:
- •20. Сферическое дв-ие тв-ого тела. Эйлеровы углы. Ур-ия сферического дв-ия:
- •21. Теорема Эйлера-Даламбера:
- •22. Мгновенная ось вращения. Мгновенные угловая ск-ть и угловое уск-ие тела при сферическом дв-ии:
- •25. Формула Пуассона:
- •26. Общий случай движения свободного твердого тела:
- •27. Абсолютное, относительное и переносное движение точки:
- •28. Сложение скоростей при сложном движении точки:
- •29. Сложение ускорений при сложном движении точки. Случай поступательного переносного движения:
- •30. Теорема Кориолиса. Ускорение Кориолиса:
- •31. Опред-ние направления и модуля ускорения Кориолиса. Случаи, когда ускорение Кориолиса равно нулю:
- •32. Сложное дв-ие твёрдого тела. Сложение поступательных движений:
- •36. Кинетические уравнения Эйлера:
- •37. Сложение поступательного и вращательного движений (векторы Vz и Vc направлены под любым углом друг к другу):
- •38. Методика расчета равновесия тела при сходящихся и произвольных силах:
- •1. Геометрическое условие равновесия.
- •2. Аналитические условия равновесия.
- •39. Динамикам материальной точки. Основные законы динамики:
- •40. Две задачи динамики материальной точки. Несвободная материальная точка:
- •42. Динамика криволин-ого дв-ия материальной точки:
- •43. Несвободное движение точки. Уравнение движения точки по заданной неподвижной кривой:
- •44. Динамика относ-ого движения точки. Частные случаи:
- •46. Теорема об изменении количества движения материальной точки:
- •47. Моменты количества движения точки относительно произвольного центра и оси:
- •48. Теорема об изменении момента количества движения материальной точки:
- •49. Работа силы. Мощность:
- •50. Примеры вычисления работы силы (работа сил тяжести, упругости пружины, трения):
- •51. Теорема об изменении кинетической энергии материальной точки:
- •52. Принцип д'Аламбера для материальной точки:
- •53. Понятие механической системы (системы материальных точек). Внешние и внутренние силы:
- •54. Масса механической системы. Центр масс механической системы:
- •57. Дифференциальные уравнения движения механической системы:
- •58 Теорема о движении центра масс механической системы. Закон сохранения движения центра масс:
- •59. Количество движения механической системы. Главный вектор количества движения:
- •60. Теорема об изменении количества движения механической системы. Закон сохранения количества движения механической системы:
- •61. Кинет-ий момент мех-ой системы относ-но центра и оси:
- •62. Кинет-ий момент абс-но тв-ого тела относ-но оси вращения:
- •63. Теорема об изменении кинет-ого моменты мех-ой системы. Закон сохр-ия кинет-ого моменты мех-ой системы:
- •64. Теорема о кинет-ой энергии мех-ой системы в общем случае её дв-ия (теорема Кенига):
- •65. Кинет-ая энергия тел при различных видах их движения:
- •71. Принцип д Аламбера для мех-ой системы:
- •72. Главный вектор и главный момент сил инерции мех-ой системы:
- •73. Возможное перемещение механической системы. Число степеней свободы:
- •74. Принцип возможных перемещений:
- •76. Голономные и неголономные связи, Обобщенные координаты, скорости и силы:
- •77. Диференциальное уравнение Лагранжа 2-го рода:
12. Плоскопараллельное движение твёрдого тела. Уравнение плоского движения. Разложение плоского движения на поступательное и вращательное:
Плоскопараллельным (или плоским) называется такое движение твердого тела, при, котором все его точки перемещаются параллельно некоторой фиксированной плоскости П . Плоское движение совершают многие части механизмов и машин, например катящееся колесо на прямолинейном участке пути, шатун в кривошипно-ползунном механизме и др. Частным случаем плоскопараллельного движения является вращательное движение твердого тела вокруг неподвижной оси.
Рассмотрим сечение
S
тела какой-нибудь плоскости Оxy,
параллельной плоскости П
.При плоскопараллельном движении
все точки тела, лежащие на прямой ММ’,
перпендикулярной течению S,
т. е. плоскости П,
движутся тождественно. Положение фигуры
S
в плоскости Оху
определяется
положением какого-нибудь проведенного
на этой фигуре отрезка АВ
. В свою очередь положение отрезка АВ
можно определить, зная координаты
и
точки
А
и угол
,
который отрезок АВ
образует с осью
х. Точку А,
выбранную для определения положения
фигуры S,
будем в дальнейшем называть полюсом.
При движении фигуры величины
и
и
будут
изменяться. Чтобы знать закон движения,
т. е. положение фигуры в плоскости Оху
в любой момент времени, надо знать
зависимости
.
Уравнения, определяющие закон происходящего движения, называются уравнениями движения плоской фигуры в ее плоскости. Они же являются уравнениями плоскопараллельного движения твердого тела.
Первые два из
уравнений движения определяют то
движение, которое фигура совершала бы
при
=const;
это, очевидно, будет поступательное
движение, при котором все точки фигуры
движутся так же, как полюс А.
Третье уравнение определяет движение,
которое фигура совершала бы при
и
,
т.е. когда полюс А
неподвижен;
это будет вращение фигуры вокруг
полюса А.
Отсюда можно заключить, что в общем
случае движение плоской фигуры в ее
плоскости может рассматриваться как
слагающееся из поступательного
движения, при котором все точки фигуры
движутся так же, как полюс А,
и из вращательного движения вокруг
этого полюса.
Основными
кинематическими характеристиками
рассматриваемого движения являются
скорость и ускорение поступательного
движения, равные скорости и ускорению
полюса
,
,
а также угловая скорость
и
угловое ускорение
вращательного
движения вокруг полюса.
13. Определение скоростей тела при плоском движении:
Плоским (плоскопараллельным) назыв. такое движение, при котором все его точки перемещаются параллельно некоторой неподвижной плоскости. Уравнения плоского движения: xA= f1(t), yA= f2(t), j = f3(t), точка А назыв. полюсом. Плоское движение тв.тела слагается из поступательного движения, при котором все точки тела движутся так же, как полюс (А),и из вращательного движения вокруг этого полюса. Поступательное перемещение зависит от выбора полюса, а величина и направление угла поворота не зависят.
Скорости
точек тела при плоском движении:
;
,
vBA= w×BA, т.е. скорость какой-либо точки В
плоской фигуры равна геометрической
сумме скорости полюса А и скорости точки
В при вращении плоской фигуры вокруг
полюса А. Теорема: при плоском движении
проекции скоростей двух точек тела на
ось, проходящую через эти точки, равны
между собой: vAcosa = vBcosb. Мгновенный
центр скоростей
– точка плоской фигуры, скорость которой
в данный момент равна нулю – Р. Если
тело движется непоступательно, т.е. w¹0,
то мгн.цент.ск. всегда существует.