Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
bkh_kollok.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
345.6 Кб
Скачать

Реакции синтеза и утилизации кетоновых тел

Используются кетоновые тела клетками всех тканей, кроме печени и эритроцитов. Особенно активно, даже в норме, они потребляются миокардом и корковым слоем надпочечников.

Реакции утилизации кетоновых тел примерно совпадают с обратным направлением реакций синтеза. В цитозоле 3-гидроксибутират окисляется, образующийся ацетоацетат проникает в митохондрии, активируется за счет сукцинил-SКоА и превращается в ацетил-SКоА, который сгорает в ЦТК.

  1. Эйкозаноиды. Роль фосфолипазы А2, циклооксигеназы, липооксигеназа в образовании простагландинов, тромбоксанов, лейкотриенов. Биологическая роль эйкозаноидов. Лекарственные препараты – ингибиторы циклооксигеназы.

Эйкозаноиды - это общая группа физиологически и фармакологически активных соединений включающая в себя простаноиды (простагландины, простоциклины, тромбоксаны) и лейкотриены. Они имеют очень короткий Т1/2, поэтому оказывают эффекты как "гормоны местного действия".

Главный субстрат для синтеза эйкозаноидов у человека - арахидоновая кислота, так как её содержание в организме человека значительно больше остальных полиеновых кислот - предшественников эйкозаноидов.

  1. Понятие о синтезе высших жирных кислот в организме человека: локализация, исходные субстраты, типы химических реакций, роль пальмитатсинтетазы. Заменимые и незаменимые жирные кислоты.

заменимые жиры - это те, которые могут самостоятельно синтезироваться в организме из других жиров и элементов, а вот незаменимые – нет. к незаменимым жирным кислотам относятся всего две жирных кислоты: линолевая и линоленовая, из которых в нашем организме синтезируются  ещё три. Из линолевой – арахидоновая  кислота, а из линоленовой – эйкозапентаеновая  и  докозагексаеновая  кислоты, которые обладают очень сильными и многообразными биологическими свойствами.

В ходе синтеза жирных кислот в каждом цикле удлинения используется не сам Ацетил-КоА, а его производное - малонил-КоА (при -окислении каждый цикл укорочения приводит к образованию Ацетил-КоА). Эту реакцию катализирует фермент АЦЕТИЛ-КоА-КАРБОКСИЛАЗА. Это ключевой фермент в мультиферментной системе синтеза ЖК. Этот фермент регулируется по типу отрицательной обратной связи. Ингибитором является продукт синтеза: ацил-КоА с длинной цепью (n=16) - пальмитоил-КоА. Активатором является цитрат. В состав небелковой части этого фермента входит витамин H (биотин).

Далее происходит поэтапное удлинение молекулы Ац-КоА на 2 углеродных атома за каждый этап за счет малонил-КоА. В процессе удлинения малонил-КоА теряет СО2. После образования малонил-КоА основные реакции синтеза жирных кислот катализируются одним ферментом - синтетазой жирных кислот (фиксирован на мембранах эндоплазматического ретикулума). Синтетаза жирных кислот содержит 7 активных центров. Участок, связывающий малонил-КоА, содержит небелковый компонент – витамин B3 (пантотеновую кислоту).

После этого ацил-АПБ вступает в новый цикл синтеза. К свободной SH-группе ацилпереносящего белка присоединяется новая молекула малонил-КоА. Затем происходит отщепление ацильного остатка, и он переносится на малонильный остаток с одновременным декарбоксилированием, и цикл реакций повторяется.

Таким образом, углеводородная цепочка будущей жирной кислоты постепенно растет (за каждый цикл – на два углеродных атома). Это происходит до момента, пока она не удлинится до 16 углеродных атомов (в случае синтеза пальмитиновой кислоты) или более (синтез других жирных кислот). Вслед за этим происходит тиолиз, и образуется в готовом виде активная форма жирной кислоты – ацил-КоА.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]