
- •1. Электрический заряд. Взаимодействие электрических зарядов. Закон Кулона. Принцип суперпозиции для сил.
- •2. Электрическое поле. Напряженность электрического поля. Принцип суперпозиции полей.
- •3 Графическое изображение полей. Линии напряжённости электрических полей. Работа сил поля.
- •4 Циркуляция вектора напряженности электростатического поля. Потенциальный характер электростатического поля
- •5. Потенциальная энергия в электростатическом поле. Потенциал. Разность потенциалов,
- •6. Эквипотенциальные поверхности. Сьязь напряженности и потенциала.
- •7 Поток вектора напряжённости. Электростатическая теорема Гаусса.
- •8. Проводник во внешнем электрическим поле. Теоремы Фарадея.
- •9.Диэлектрики.Поляризация диэлектриков.
- •11.Сегнетоэлектрики.Их свойства.
- •12 Электроёмкость. Конденсаторы. Последовательное соединение конденсаторов.
- •13.Электроемкость. Конденсаторы. Параллельное соединение конденсаторов.
- •15.Постоянный электрический ток. Си;.А тока, вектор плотности тока. Уравнение непрерывности. Условие стационарности тока.
- •16. Закон Ома для участка цепи. Электрическое сопротивление. Закон Ома в дифференциальной форме.
- •17 Сторонние силы.Электродвижущая сила источника. Напряжение. Обобщеный закон ома.
- •18 Сторонние силы. Эдс источника. Закон ома для однородного и неоднородного участка цепи.
- •19. Сторонние силы. Электродвижущая сила источника. Закон Ома для замкнутой цепи. Ток короткого замыкания. Режим холостого хода источника.
- •20. Правила Кирхгофа. Последовательное соединение сопротивлений.
- •21.Правила Киртхгофа. Параллельное соединение сопротивлений.
- •22 Работа и мощность тока. Закон Джоуля-Ленца
- •26 Закон Био-Савара-Лапласа. Магнитное поле витка с током.
- •28. Магнитный поток. Теорема Гаусса для магнитного поля в вакууме.
- •29. Циркуляция вектора магнитной индукции. Закон полного тока.
- •31. Сила Ампера. Закон Ампера. Работа силы Ампера.
- •32 Взаимодействие параллельных токов
- •33. Действие магнитного поля на движущийся заряд. Сила Лоренца. Эффект Холла.
- •34. Закон электромагнитной индукции Фарадея. Правило Ленца.
- •35. Явление самоиндукции. Индуктивность
- •36. Взаимная индукция. Трансформатор
- •37 Энергия магнитного поля.
- •38 Электромагнитные волны
- •39. Шкала электромагнитных волн
- •40. Световые волны. Их основные характеристики.
- •41. Интерференция света. Сложение двух когерентных волн.
- •42. Интерференция света. Условия максимума и минимума интерференции.
- •45. Интерцеренционные схемы. Бизеркало Френделя.
- •44. Интерцеренционные схемы. Бипризма Френделя
- •49 Интерференция на клине.
- •51.Дифракция света. Принцип Гюйгенса-Френеля.
- •54. Поляризация света. Виды поляризации
- •55. Свет поляризованный и неполяризованный.
- •46. Интерференционные схемы. Зеркало Ллойда.
- •70 Внешний фотоэффект. Уравнение Эйнштейна.
- •71 Опыт Боте. Фотоны.
- •75. Постулаты Бора. Опыт Франка и Герца.
- •76. Состав и характеристика атомного ядра.
- •77. Масса и энергия связи ядра
- •76.Радиоактивность. Закон радиоактивного распада.
- •79. Ядерные реакции. Ядерный реактор.
- •80.Методы регестрирования эдеиентарных частиц. Камера Вильсона.
- •81. Методы регистрации элементарных частиц. Пузырьковая камера.
- •56.Поляризация света. Закон Брюстера.
- •68. Квантование энергии Формула Планка.
- •52. Дифракция Света. Метод Френеля
- •57. Поляризация света. Оптически активные вещества.
- •58. Дисперсия света. Поглощение света.
- •63. Тепловое излучение. Люминесценция.
- •64. Испускательная и поглощательная способности тела. Абсолютно черное и серое тело. Закон Кирхгофа.
- •82Методы регистрации элементарных частиц. Искровая камера.
- •73. Модель атома Томсона. Опыты по рассеиванию а-частиц. Ядерная модель атома.
- •74.Атом водорода по Бору.
- •10.Теорема Гауса для поля в диэлектрике.
- •14. Энергия и плотность энергии электрического поля.
- •23.Магнитное поле в вакууме. Силовые линии магнитного поля
- •24.Индукция магнитного поля.
- •47.Интерференционные схемы. Билинза Бийе.
- •48.Интерференция в тонких пленках.
- •50.Применение интерференции света. Интерферометр Майкельсона.
76. Состав и характеристика атомного ядра.
Атомное ядро - центральная часть атома, в которой сосредоточена основная его масса и структура которого определяет химический элемент, к которому относится атом. Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протоны и нейтроны входящие в атомное ядро имеют общее название – нуклоны.
Количество протонов в ядре называется его зарядовым числом Z — это число равно порядковому номеру элемента, к которому относится атом в таблице Менделеева.
Количество нейтронов в ядре называется его изотопическим числом N. Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов — называются изотонами. Полное количество нуклонов в ядре называется его массовым числом A (очевидно A = N + Z) и приблизительно равно средней массе атома, указанной в таблице Менделеева
Атомные ядра изучает ядерная физика.
Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами.
77. Масса и энергия связи ядра
Масса и энергия связи ядра
Масса ядра измеряется в атомных единицах массы (а.е.м). За одну атомную единицу массы принимается 1/12 часть массы нейтрального атома углерода 12 С:
1а.е.м = 1.6606 10-27 кг.
А.е.м. выражается через энергетические единицы:
1а.е.м = 1.510-3 эрг = 1.510-10Дж = 931.49 МэВ
Масса ядра всегда меньше суммы масс составляющих его нуклонов. Энергия связи ядра Eсв(A,Z) это минимальная энергия, необходимая, чтобы развалить ядро на отдельные, составляющие его нуклоны.
Есв(A, Z) = [Z mp + (A - Z)mn - M(A, Z)]c2,
где Z - число протонов, ( A - Z) - число нейтронов, mp - масса протона, mn - масса нейтрона, М(A,Z) - масса ядра с массовым числом А и зарядом Z. Энергия связи ядра, выраженная через массу атома Mат, имеет вид:
Есв(A,
Z) = [ZmH
+
(A - Z)mn
-
Mат(A,
Z)]c2
,
где mH - масса атома водорода.
Удельная энергия связи ядра ε(A, Z) это энергия связи, приходящаяся на один нуклон
ε(A, Z) = Eсв(A,Z) / A.
На
рис. 1 показана зависимость удельной
энергии связи ядра
от
числа нуклонов A. Видно, что наиболее
сильно связаны ядра в районе железа и
никеля (A ~ 55-60).
Такой ход зависимости ε(A) показывает,
что для легких ядер энергетически
выгодны реакции синтеза более тяжелых
ядер, а тяжелых - деление на более легкие
осколки.
Избыток масс (дефект масс) Δ связан с массой атома Mат(A,Z) и массовым числом A соотношением:
Δ = Мат(A,Z) - А.
76.Радиоактивность. Закон радиоактивного распада.
Закон:
79. Ядерные реакции. Ядерный реактор.
Я́дерная реа́кция — процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом, обычно приводящий к выделению колоссального количества энергии. Для осуществления реакции между двумя или несколькими частицами необходимо, чтобы взаимодействующие частицы (ядра) сблизились на расстояние порядка 10−15 м, то есть характерного радиуса действия ядерных сил. Ядерные реакции могут происходить как с выделением, так и с поглощением энергии.
Я́дерный реа́ктор — это устройство, в котором осуществляется управляемая цепная ядерная реакция, сопровождающаяся выделением энергии. Первый Я. р. построен в декабре 1942 года в США под руководством Э. Ферми. В Европе первый Я. р. пущен в декабре 1946 года в Москве под руководством И. В. Курчатова. К 1978 году в мире работало уже около сотни Я. р. различных типов. Составными частями любого Я. р. являются: активная зона с ядерным топливом, обычно окруженная отражателем нейтронов, теплоноситель, система регулирования цепной реакции, радиационная защита, система дистанционного управления. Основной характеристикой Я. р. является его мощность. Мощность в 1 МВт соответствует цепной реакции, в которой происходит 3·1016 актов деления в 1 сек.
По характеру использования ядерные реакторы делятся на:
Экспериментальные реакторы, предназначенные для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов;
Исследовательские реакторы
Изотопные (оружейные, промышленные) реакторы
Энергетические реакторы, предназначенные для получения электрической и тепловой энергии, используемой в энергетике.