
- •Томский университет автоматизированных систем управления
- •А.П. Зайцев, а.А. Шелупанов
- •Технические средства и методы защиты
- •Информации
- •Учебное пособие
- •Рецензенты: введение
- •1. Технические каналы утечки информации
- •1.2. Технические каналы утечки речевой информации
- •1.2.1. Возможные каналы утечки речевой информации
- •1.2.3. Вибрационные технические каналы
- •1.2.4. Электроакустические каналы утечки информации
- •1.2.5. Оптико-электронный технический канал утечки
- •1.2.6. Параметрические технические каналы утечки информации
- •1.3. Технические каналы утечки информации, обрабатываемой тспи и передаваемой по каналам связи
- •1.3.1. Электрические линии связи
- •1.3.2. Электромагнитные каналы утечки информации
- •1.3.2.1. Электромагнитные излучения элементов тспи
- •1.3.2.2. Электромагнитные излучения на частотах работы вч генераторов тспи и втсс
- •1.3.2.3. Электромагнитные излучения на частотах самовозбуждения унч тспи
- •1.3.3. Электрические каналы утечки информации
- •1.3.3.1. Наводки электромагнитных излучений тспи
- •1.3.3.2. Просачивание информационных сигналов в цепи электропитания
- •1.3.3.3. Паразитные связи через цепи питания
- •1.3.3.4. Просачивание информационных сигналов в цепи заземления
- •1.3.3.5. Съем информации по электрическим каналам утечки информации
- •1.3.4. Параметрический канал утечки информации
- •1.4. Способы скрытого видеонаблюдения и съемки
- •1.5. Демаскирующие признаки объектов и акустических закладок
- •1.5.1. Общие положения
- •1.5.2. Демаскирующие признаки объектов
- •1.5.3. Демаскирующие признаки акустических закладок
- •Средства акустической разведки
- •2.1. Микрофоны
- •2.2. Направленные микрофоны
- •2.2.1. Виды направленных микрофонов.
- •2.2.2. Сравнение и оценка направленных микрофонов
- •Проводные системы, портативные диктофоны и электронные стетоскопы
- •2.3.1. Общие сведения
- •2.3.2. Примеры технической реализации диктофонов и транскрайберов
- •С тетоскопы
- •2.4. Радиомикрофоны
- •2.5. Лазерные микрофоны
- •2.6. Гидроакустические датчики
- •Свч и ик передатчики
- •Средства радио- и радиотехнической разведки
- •3.1. Сканирующие компьютерные радиоприемники, радиопеленгаторы
- •3.2. Анализаторы спектра, радиочастотомеры
- •Контроль и прослушивание телефонных каналов связи
- •4.1. Прослушивание телефонных переговоров
- •4.2. Непосредственное подключение к телефонной
- •4.3. Подкуп персонала атс
- •4.4. Прослушивание через электромагнитный звонок
- •4.5. Прослушивание помещений через микрофон телефонного аппарата
- •4.6. «Атаки» на компьютеризованные телефонные
- •5. Системы слежения за транспортными средствами
- •6. Обеспечение безопасности объектов
- •6.1. Классификация объектов охраны
- •6.2. Особенности задач охраны различных типов объектов
- •6.3. Общие принципы обеспечения безопасности объектов
- •6.4. Некоторые особенности построения периметровой охраны
- •6.4.1. Периметр – первая линия защиты
- •6.4.2. Функциональные зоны охраны
- •6.4.3. Оптимизация построения системы охранной безопасности
- •6.5. Контроль доступа к защищаемым помещениям
- •Охрана оборудования и перемещаемых носителей информации
- •6.7. Быстроразвертываемые охранные системы
- •Анализ состава зарубежных комплексов
- •6.9. Анализ состава отечественных быстроразвертываемых средств охраны
- •Системы защиты территории и помещений
- •6.10.1. Инфракрасные системы
- •6.10.2. Элементы защиты ик-датчиков
- •6.11. Оптоволоконные системы
- •6.12. Емкостные системы охраны периметров
- •Вибрационные системы с сенсорными кабелями
- •6.14. Вибрационно-сейсмические системы
- •Радиолучевые системы
- •6.16. Системы «активной» охраны периметров
- •6.17. Телевизионные системы
- •7. Защита электронных устройств и объектов от побочных электромагнитных излучений
- •7.1. Экранирование электромагнитных волн
- •7.1.1. Электромагнитное экранирование и развязывающие цепи
- •7.1.2. Подавление емкостных паразитных связей
- •7.1.3. Подавление индуктивных паразитных связей
- •7.1.4. Экранирование проводов и катушек индуктивности
- •7.2. Безопасность оптоволоконных кабельных систем
- •7.3. Заземление технических средств
- •7.4. Фильтрация информационных сигналов.
- •7.5. Основные сведения о помехоподавляющих фильтрах
- •7.6. Выбор типа фильтра
- •7.7. Пространственное и линейное зашумление
- •8. Устройства контроля и защиты слаботочных линий и сети
- •8.1. Особенности слаботочных линий и сетей как каналов утечки информации
- •8.2. Рекомендуемые схемы подключения анализаторов к электросиловым и телефонным линиям в здании
- •8.3. Устройства контроля и защиты проводных линий от утечки информации
- •8.4. Способы предотвращения утечки информации через пэмин пк
- •10.1. Общие сведения
- •Максимальная дальность обнаружения металлических объектов (на воздухе) – до 170 см.
- •11. Нелинейные локаторы
- •Модель радиолокационного наблюдения в условиях нелинейной локации
- •11.2. Технология нелинейной локации
- •11.3. Эффект затухания
- •Другие возможности применения аудио демодуляции в лн
- •Тип излучения
- •Другие характеристики лн
- •Промышленные образцы лн
- •Технические средства радиомониторинга и обнаружения закладных устройств
- •12.1. Общие сведения
- •12.2. Индикаторы поля
- •12.3. Комплексы радиомониторинга и обнаружения закладок
- •Назначение usb – ключа:
- •Преимущества
- •13.4. Считыватели «Proximity»
- •13.5. Технология защиты информации на основе смарт-карт
- •13.6. Система защиты конфиденциальной информации «Secret Disk»
- •Генерация ключей шифрования
- •13.7. Программно-аппаратный комплекс «Аккорд-1.95» Назначение комплекса
- •В ерсии комплекса
- •Особенности модификаций комплекса
- •Подсистема обеспечения целостности
- •13.9. Аппаратно-программная система криптографической защиты сообщений «sx-1»
- •Словарь терминов по информационной безопасности
- •Список использованной литературы
- •Перечень сведений конфиденциального характера
- •9 Сентября 2000 г. № Пр-18959 февраля 2001 г. Доктрина информационной безопасности российской федерации
- •Информационная безопасность
- •1. Национальные интересы Российской Федерации в информационной сфере и их обеспечение
- •2. Виды угроз информационной безопасности Российской Федерации
- •3. Источники угроз информационной безопасности Российской Федерации
- •4. Состояние информационной безопасности Российской Федерации и основные задачи по ее обеспечению
- •I. Общие положения
- •II. Государственная система защиты информации
- •III.Организация защиты информации в системах и средствах информатизации и связи
- •VI. Контроль состояния защиты информации
- •Положение о сертификации средств защиты информации по требованиям безопасности информации
- •Общие положения
- •2. Организационная структура системы сертификации
- •3. Порядок проведения сертификации и контроля
- •4. Требования к нормативным и методическим документам по сертификации средств защиты информации
- •Положение по аттестации объектов информатизации по требованиям безопасности информации
- •Общие положения
- •Организационная структура системы аттестации объектов информатизации по требованиям безопасности информации
- •Порядок проведения аттестации и контроля
- •Требования к нормативным и методическим документам по аттестации объектов информатизации
- •Содержание
- •1.1. Общие понятия
- •1.3.2.4. Побочные электромагнитные излучения персонального компьютера
- •2.3.2. Примеры технической реализации диктофонов и транскрайберов
- •7.4. Заземление технических средств ……………………….
Технические средства радиомониторинга и обнаружения закладных устройств
12.1. Общие сведения
Технические средства радиомониторинга и обнаружения закладных устройств можно разделить на довольно простые индикаторы электромагнитного поля и более сложные комплексы радиомониторинга.
Индикаторы электромагнитного поля предназначены для выявления повышенных электромагнитных излучений и передающих устройств в контролируемой зоне в диапазоне частот от 30 до 3600 МГц.
Индикаторы электромагнитного поля предназначены для выявления и локализации различных источников радиоизлучения, для оперативного обнаружения и поиска радиоизлучающих устройств, в том числе: радиомикрофонов, телефонных радиоретрансляторов, радиостетоскопов, скрытых видеокамер с передачей информации по радиоканалу, радиомаяков систем слежения за перемещением объектов, несанкционированно включенных радиостанций и радиотелефонов. Они обнаруживают малейшую величину ВЧ энергии, генерируемой транзисторами, интегральными схемами, реле и т.п., при переходе их от включённого к выключенному состоянию и наоборот. Некоторые индикаторы позволяют не только обнаружить излучение радиопередатчика, негласно установленного в проверяемом помещении, но и измерить частоту его сигнала, а также оценить мощность излучения в точке приема и выявлять даже сигналы средств съема информации, работающих с прикрытием, включая устройства, использующие маскировку сигнала.
Принцип действия большинства индикаторов электромагнитного поля основан на широкополосном детектировании электрического поля. Индикаторы обеспечивают возможность обнаружения радиопередающих прослушивающих устройств с любыми видами модуляции.
Представленные на отечественном рынке комплексы для проведения специсследований позволяют в автоматическом режиме решать ряд задач измерений ПЭМИН и облегчают работу инженера-исследователя, повышают производительность его труда.
Некоторые комплексы на основе сканирующих приемников (например «Зарница») применяются для быстрого анализа спектра ПЭМИН, излучаемых техническим средством, но не обеспечивают высокой точности измерений. При необходимости выдачи предписания на эксплуатацию технического средства, измерения, произведенные при помощи таких комплексов, подлежат обязательной ручной проверке с использованием метрологического измерительного оборудования (измерительных приемников или анализаторов спектра).
Комплексы типа «Навигатор» применимы для проведения достаточно точных измерений ПЭМИН в условиях экранированных помещений (безэховых экранированных камер), но результаты измерений могут быть достоверными только при их тщательной ручной проверке с использованием средств самого комплекса.
Более совершенные комплексы («Легенда», «Сигурд») позволяют проводить измерения, не требующие ручной верификации, что подтверждено сертификатом Гостехкомиссии.
Все комплексы решают одну и ту же задачу, поэтому имеют много общих черт. Однако есть и весьма существенные различия между ними. Чтобы уточнить эти различия, рассмотрим применяемые в комплексах методы автоматизации.
1. Автоматизация обнаружения гармонических составляющих тестового сигнала.
Обычно инженер-исследователь ищет гармонические составляющие «на слух», распопознавая искомые компоненты по звуку и форме осциллограммы демодулированного сигнала. Инструментальная реализация такого режима приводит к тому, что автоматическая система, распознающая сигналы по их форме, работает лишь ненамного быстрее квалифицированного инженера-исследователя. Поэтому в первых комплексах данный режим не был реализован, а опознавание производилось по критерию изменения уровней сигналов при включении тестового режима на исследуемом техническом средстве (так называемый «энергетический критерий»). Такой способ дает неплохие результаты: вся работа по обнаружению сводится к двум проходам сканирования диапазона специсследования: при первом проходе запоминается картина шумов при выключенном тестовом режиме, при втором проходе исследуемое техническое средство переводится в тестовый режим, и измеряются уровни всех сигналов, превышающих запомненные шумы на заданное значение порога. Ускорение работы достигается очень существенное: вместо нескольких часов специсследование выполняется за считанные минуты. В результате инженер-исследователь получает таблицу частот и уровней сигналов (типичное количество обнаруженных составляющих - несколько сотен) и может рассчитать зоны разведдоступности. Однако результаты расчета могут оказаться неверными, так как электромагнитная обстановка изменяется со временем. В диапазоне от 9 кГц до 1000 МГц работают тысячи радиостанций и источников радиопомех. Некоторые из них время от времени включаются и выключаются, и если какой-то источник радиоизлучения не работал во время сканирования спектра шумов, а при втором проходе включился, его частота окажется в списке обнаруженных составляющих. Естественно, это может случайным образом изменить рассчитанные размеры зон разведдоступности. Таким образом, оператору приходится вручную проверять все обнаруженные составляющие, на что будет уходить время. По-настоящему эффективно данный способ работает в безэховых экранированных камерах, которые ввиду своей дороговизны доступны очень немногим предприятиям.
В более совершенных комплексах применяется автоматическое опознавание информационных сигналов. Согласно методике инженеру-исследователю предлагается выполнить поиск какой-либо гармонической составляющей вручную или в специальном «полуавтоматическом» режиме, либо создать эталонный образ искомого сигнала при помощи редактора (генератора), либо выбрать ранее созданный образ из библиотеки, после чего комплекс автоматически обнаруживает в эфире сигналы, похожие на заданный сигнал. Для опознавания сигналов в таких комплексах применяется взаимно корреляционная функция. Это более затратный по времени способ, но и существенно более точный. По результатам сертификационных испытаний комплекса «Легенда» данные, полученные с его помощью, не требуют ручной верификации (сертификат Гостехкомиссии при Президенте РФ № 603).
Для преодоления отставания в скорости работы от комплексов, использующих «энергетический» критерий, разработчики комплексов, работающих по «информационному» критерию, используют различные приемы, такие как анализ сигнала в окрестностях частот, кратных тактовой частоте теста, измерения партий однотипных технических средств с использованием шаблонов частот. Это приводит к заметному ускорению работы без снижения точности, но, к сожалению, не во всех режимах работы комплексов.
Автоматизация измерения уровней сигналов.
Этим свойством обладают практически все современные комплексы.
3. Измерение наводок в сети питания, линиях и коммуникациях. Согласно действующим нормативным документам, измерение наводок в сети питания должно осуществляться при помощи эквивалента сети или пробников напряжения. Эквивалент сети достаточно сложное и относительно дорогостоящее устройство, однако измерения, проведенные с его помощью, обычно точнее измерений, выполненных с помощью пробника напряжения. «Чистая» сеть, имитируемая эквивалентом сети, позволяет измерять создаваемые исследуемым техническим средством наводки в сеть питания, уровень которых на 4-6 дБ выше собственных шумов эквивалента сети, в то время как точность измерений, выполняемых при помощи пробника напряжения, зависит от уровней шума сети питания. Для автоматизированных измерительных систем очень важна возможность использования в своем составе различных приемных устройств: антенн, пробников напряжения, эквивалентов сети. Соответственно, в программном обеспечении комплекса должен быть предусмотрен механизм поддержки дополнительных приемных устройств, а именно, возможность ввода таких параметров, как рабочий диапазон, антенные коэффициенты (коэффициенты затухания или усиления) и их автоматический учет в процессе измерений. На сегодняшний день таким механизмом обладают комплексы «Легенда».
Особенности функционирования различного рода технических средств радиомониторинга и обнаружения закладных устройств рассмотрим на конкретных примерах их технической реализации.