
- •Томский университет автоматизированных систем управления
- •А.П. Зайцев, а.А. Шелупанов
- •Технические средства и методы защиты
- •Информации
- •Учебное пособие
- •Рецензенты: введение
- •1. Технические каналы утечки информации
- •1.2. Технические каналы утечки речевой информации
- •1.2.1. Возможные каналы утечки речевой информации
- •1.2.3. Вибрационные технические каналы
- •1.2.4. Электроакустические каналы утечки информации
- •1.2.5. Оптико-электронный технический канал утечки
- •1.2.6. Параметрические технические каналы утечки информации
- •1.3. Технические каналы утечки информации, обрабатываемой тспи и передаваемой по каналам связи
- •1.3.1. Электрические линии связи
- •1.3.2. Электромагнитные каналы утечки информации
- •1.3.2.1. Электромагнитные излучения элементов тспи
- •1.3.2.2. Электромагнитные излучения на частотах работы вч генераторов тспи и втсс
- •1.3.2.3. Электромагнитные излучения на частотах самовозбуждения унч тспи
- •1.3.3. Электрические каналы утечки информации
- •1.3.3.1. Наводки электромагнитных излучений тспи
- •1.3.3.2. Просачивание информационных сигналов в цепи электропитания
- •1.3.3.3. Паразитные связи через цепи питания
- •1.3.3.4. Просачивание информационных сигналов в цепи заземления
- •1.3.3.5. Съем информации по электрическим каналам утечки информации
- •1.3.4. Параметрический канал утечки информации
- •1.4. Способы скрытого видеонаблюдения и съемки
- •1.5. Демаскирующие признаки объектов и акустических закладок
- •1.5.1. Общие положения
- •1.5.2. Демаскирующие признаки объектов
- •1.5.3. Демаскирующие признаки акустических закладок
- •Средства акустической разведки
- •2.1. Микрофоны
- •2.2. Направленные микрофоны
- •2.2.1. Виды направленных микрофонов.
- •2.2.2. Сравнение и оценка направленных микрофонов
- •Проводные системы, портативные диктофоны и электронные стетоскопы
- •2.3.1. Общие сведения
- •2.3.2. Примеры технической реализации диктофонов и транскрайберов
- •С тетоскопы
- •2.4. Радиомикрофоны
- •2.5. Лазерные микрофоны
- •2.6. Гидроакустические датчики
- •Свч и ик передатчики
- •Средства радио- и радиотехнической разведки
- •3.1. Сканирующие компьютерные радиоприемники, радиопеленгаторы
- •3.2. Анализаторы спектра, радиочастотомеры
- •Контроль и прослушивание телефонных каналов связи
- •4.1. Прослушивание телефонных переговоров
- •4.2. Непосредственное подключение к телефонной
- •4.3. Подкуп персонала атс
- •4.4. Прослушивание через электромагнитный звонок
- •4.5. Прослушивание помещений через микрофон телефонного аппарата
- •4.6. «Атаки» на компьютеризованные телефонные
- •5. Системы слежения за транспортными средствами
- •6. Обеспечение безопасности объектов
- •6.1. Классификация объектов охраны
- •6.2. Особенности задач охраны различных типов объектов
- •6.3. Общие принципы обеспечения безопасности объектов
- •6.4. Некоторые особенности построения периметровой охраны
- •6.4.1. Периметр – первая линия защиты
- •6.4.2. Функциональные зоны охраны
- •6.4.3. Оптимизация построения системы охранной безопасности
- •6.5. Контроль доступа к защищаемым помещениям
- •Охрана оборудования и перемещаемых носителей информации
- •6.7. Быстроразвертываемые охранные системы
- •Анализ состава зарубежных комплексов
- •6.9. Анализ состава отечественных быстроразвертываемых средств охраны
- •Системы защиты территории и помещений
- •6.10.1. Инфракрасные системы
- •6.10.2. Элементы защиты ик-датчиков
- •6.11. Оптоволоконные системы
- •6.12. Емкостные системы охраны периметров
- •Вибрационные системы с сенсорными кабелями
- •6.14. Вибрационно-сейсмические системы
- •Радиолучевые системы
- •6.16. Системы «активной» охраны периметров
- •6.17. Телевизионные системы
- •7. Защита электронных устройств и объектов от побочных электромагнитных излучений
- •7.1. Экранирование электромагнитных волн
- •7.1.1. Электромагнитное экранирование и развязывающие цепи
- •7.1.2. Подавление емкостных паразитных связей
- •7.1.3. Подавление индуктивных паразитных связей
- •7.1.4. Экранирование проводов и катушек индуктивности
- •7.2. Безопасность оптоволоконных кабельных систем
- •7.3. Заземление технических средств
- •7.4. Фильтрация информационных сигналов.
- •7.5. Основные сведения о помехоподавляющих фильтрах
- •7.6. Выбор типа фильтра
- •7.7. Пространственное и линейное зашумление
- •8. Устройства контроля и защиты слаботочных линий и сети
- •8.1. Особенности слаботочных линий и сетей как каналов утечки информации
- •8.2. Рекомендуемые схемы подключения анализаторов к электросиловым и телефонным линиям в здании
- •8.3. Устройства контроля и защиты проводных линий от утечки информации
- •8.4. Способы предотвращения утечки информации через пэмин пк
- •10.1. Общие сведения
- •Максимальная дальность обнаружения металлических объектов (на воздухе) – до 170 см.
- •11. Нелинейные локаторы
- •Модель радиолокационного наблюдения в условиях нелинейной локации
- •11.2. Технология нелинейной локации
- •11.3. Эффект затухания
- •Другие возможности применения аудио демодуляции в лн
- •Тип излучения
- •Другие характеристики лн
- •Промышленные образцы лн
- •Технические средства радиомониторинга и обнаружения закладных устройств
- •12.1. Общие сведения
- •12.2. Индикаторы поля
- •12.3. Комплексы радиомониторинга и обнаружения закладок
- •Назначение usb – ключа:
- •Преимущества
- •13.4. Считыватели «Proximity»
- •13.5. Технология защиты информации на основе смарт-карт
- •13.6. Система защиты конфиденциальной информации «Secret Disk»
- •Генерация ключей шифрования
- •13.7. Программно-аппаратный комплекс «Аккорд-1.95» Назначение комплекса
- •В ерсии комплекса
- •Особенности модификаций комплекса
- •Подсистема обеспечения целостности
- •13.9. Аппаратно-программная система криптографической защиты сообщений «sx-1»
- •Словарь терминов по информационной безопасности
- •Список использованной литературы
- •Перечень сведений конфиденциального характера
- •9 Сентября 2000 г. № Пр-18959 февраля 2001 г. Доктрина информационной безопасности российской федерации
- •Информационная безопасность
- •1. Национальные интересы Российской Федерации в информационной сфере и их обеспечение
- •2. Виды угроз информационной безопасности Российской Федерации
- •3. Источники угроз информационной безопасности Российской Федерации
- •4. Состояние информационной безопасности Российской Федерации и основные задачи по ее обеспечению
- •I. Общие положения
- •II. Государственная система защиты информации
- •III.Организация защиты информации в системах и средствах информатизации и связи
- •VI. Контроль состояния защиты информации
- •Положение о сертификации средств защиты информации по требованиям безопасности информации
- •Общие положения
- •2. Организационная структура системы сертификации
- •3. Порядок проведения сертификации и контроля
- •4. Требования к нормативным и методическим документам по сертификации средств защиты информации
- •Положение по аттестации объектов информатизации по требованиям безопасности информации
- •Общие положения
- •Организационная структура системы аттестации объектов информатизации по требованиям безопасности информации
- •Порядок проведения аттестации и контроля
- •Требования к нормативным и методическим документам по аттестации объектов информатизации
- •Содержание
- •1.1. Общие понятия
- •1.3.2.4. Побочные электромагнитные излучения персонального компьютера
- •2.3.2. Примеры технической реализации диктофонов и транскрайберов
- •7.4. Заземление технических средств ……………………….
11.2. Технология нелинейной локации
В процессе эксплуатации ЛН могут возникать ложные срабатывания, обусловленные присутствием в обследуемом помещении бытовых электронных приборов, таких как, например, электронные калькуляторы, электронные часы и т. п. На практике подобные срабатывания, вызванные электронными приборами, не имеющими отношения к средствам технической разведки, легко идентифицировать визуально в отличие от ложных срабатываний, вызванных металлическими объектами, не содержащими электронных компонентов. Качественный ЛН должен отличать полупроводниковые соединения от ложных.
Рассмотрим один из способов повышения достоверности обнаружения полупроводниковых устройств с помощью ЛН [34].
Антенна ЛН облучает объект для определения наличия в нем электронных компонентов. Когда высокочастотный сигнал облучает полупроводниковые соединения, он возвращается на гармонических частотах с определенными уровнями, благодаря нелинейным характеристикам соединения. Но ложные срабатывания также могут возникнуть из-за того, что места соединения двух различных металлов или коррозионные металлические конструкции также вызывают гармонический отраженный сигнал вследствие своих нелинейных характеристик. Такие соединения называются ложными.
Рис. 11.2. Вольт - амперные характеристики полупроводникового и ложного соединений
На рис.11.2 показаны вольт-амперные характеристики полупроводникового и ложного соединений. Из-за различного характера нелинейных характеристик полупроводникового и ложного соединений составляющие 2-й и 3-й гармоник в отраженном сигнале будут иметь различное соотношение. Когда ЛН облучает полупроводник, вторая гармоника отклика превосходит третью по интенсивности. При облучении ложного соединения имеет место обратная картина: отклик на 3-й гармонике имеет более высокий уровень, чем на 2-й.
Для повышения вероятности безошибочного определения полупроводника от ложного соединения качественный ЛН должен обладать свойством сравнения уровней откликов на второй и третьей гармониках. В этом случае ЛН должен иметь два приемника и как следствие – более высокую стоимость.
Для ЛН, имеющего возможность анализа 2-й и 3-й гармоник, очень важно, чтобы приемные тракты гармоник были частотно изолированы друг от друга и не оказывали взаимного влияния. Сравнение большого числа НЛ различного производства свидетельствует, что большинство из них не имеет хорошей частотной изоляции в приемных трактах. В результате этого чистый полупроводник может иметь более сильный отклик на третьей гармонике, в то время как ложное соединение – на второй. Следовательно, даже если прибор имеет возможность приема отклика на обеих гармониках, то достаточно сложно отличить настоящий полупроводник от ложного соединения.
11.3. Эффект затухания
Для более достоверного распознавания полупроводникового и ложного соединения можно использовать «эффект затухания». Если прослушивать демодулированный аудио отклик от настоящего полупроводника, то по мере приближения к нему антенны уровень шумов будет значительно понижаться, а по мере удаления антенны уровень шума начнет возрастать и постепенно приблизится к нормальному значению. Демодулированный аудио сигнал имеет наименьшее значение непосредственно над полупроводниковым соединением.
При приближении антенны ЛН к ложному соединению аудио уровень шума несколько изменится в ту или иную сторону. По мере удаления антенны ЛН аудио шум снова примет обычное значение.
Теория «эффекта затухания» основана на том факте, что если ЛН излучает немодулированный сигнал, то сигнал отклика на частотах гармоник также будет немодулированным и и характеризоваться затуханием.
Аудио демодуляция может быть реализована как в ЛН с непрерывным так и с импульсным излучением. Имеется несколько моделей ЛН отечественного производства, например, «NR 900 EM», в которых реализован режим «20К», который основан на «эффекте затухания» и применяется для определения типа соединений. Но данный метод не дает достаточно надежных результатов. Большинство ложных соединений достаточно надежно идентифицируются на основе «эффекта затухания» с применением обычной частотной модуляции непрерывного излучения.