- •Материаловедение. Технология конструкционных материалов
- •Содержание
- •Лабораторная работа №1 классификация и маркировка сталей и сплавов
- •Классификация сталей
- •По металлургическому качеству.
- •По химическому составу.
- •Маркировка сталей в россии Маркировка углеродистых сталей
- •Маркировка легированных сталей
- •Легированные стали
- •Маркировка сталей по евронормам Маркировка по механическим свойствам
- •Маркировка цветных металлов и сплавов Медь и ее сплавы
- •Магний и его сплавы
- •Алюминий и его сплавы
- •Титан и его сплавы
- •Классификация и маркировка чугунов
- •Порядок выполнения работы
- •Содержание отчета
- •Контрольные вопросы
- •Лабораторная работа № 2 Применение сталей и сплавов в промышленности
- •Краткие теоретические сведения
- •1. Влияние на сталь углерода, постоянных примесей и легирующих элементов
- •2. Конструкционные стали
- •1.1. Конструкционные строительные стали
- •1.2. Листовая сталь для холодной штамповки
- •1.3. Цементуемые (низкоуглеродистые) стали
- •1.4. Улучшаемые (среднеуглеродистые) стали
- •1.5. Пружинно-рессорные стали
- •1.6. Шарикоподшипниковые стали
- •1.7. Автоматные стали
- •1.8. Высокомарганцовистая износостойкая сталь г13л
- •1.9. Жаростойкие и жаропрочные стали и сплавы
- •2. Инструментальные стали и сплавы
- •2.1. Стали для режущих инструментов
- •2.2. Стали для измерительных инструментов
- •2.3. Штамповые стали
- •2.4. Инструментальные спеченные твердые сплавы
- •3. Стали и сплавы с особыми свойствами
- •3.1. Нержавеющие (коррозионностойкие) стали
- •3. Чугуны
- •Вариант 2
- •Вариант 3
- •Вариант 4
- •Контрольные вопросы
- •Лабораторная работа № 3 Определение марки стали по искре
- •Краткие теоретические сведения
- •Последовательность выполнения работы
- •Содержание отчета по лабораторной работе
- •Контрольные вопросы
- •Лабораторная работа № 4 Исследование свойств материалов при одноосном растяжении
- •Краткие сведения из теории
- •Порядок выполнения работы
- •Обработка результатов испытаний и составление отчета
- •Содержание отчета
- •Контрольные вопросы
- •Лабораторная работа № 5 Испытание формовочных смесей
- •Оборудование и материалы
- •Содержание работы
- •Ход работы
- •Порядок изготовления образца:
- •Порядок определения величины газопроницаемости:
- •Порядок определения предела прочности:
- •Порядок определения влажности:
- •Технические свойства и состав формовочной смеси
- •Результаты испытаний
- •Лабораторная работа № 6 Разработка технологического процесса изготовления отливки
- •Разработка технологического процесса изготовления отливки в разовой песчаной форме
- •I исполнение II исполнение а-а
- •2.11. Литейная форма в сборе, полученная по модели с отъемным знаком.
- •3. Контрольные вопросы к работе
- •4. Порядок оформления отчета
- •Лабораторная работа № 7 Технология производства стали в мартеновских печах
- •Оборудование кузнечных цехов
- •Основные инструменты для свободной ковки
- •Основные операции ковки и применяемый инструмент
- •Методические рекомендации
- •Рекомендуемый порядок разработки технологических операций ковки
- •Заключение
- •Список использованных источников
1.5. Пружинно-рессорные стали
Таблица 5. Применение пружинно- рессорных сталей
Пружинно- рессорные сталей |
|
60С2, 60С2А |
Для рессор из полосовой стали толщиной 3 - 16 мм и пружинной ленты толщиной 0,08 - 3 мм; для витых пружин из проволоки диаметром 3 - 16 мм. Обрабатываются резанием плохо. Максимальная температура эксплуатации 250 °С. |
70СЗА |
Для тяжелонагруженных пружин ответственного назначения. |
50ХГ, 50ХГА |
Для рессор из полосовой стали толщиной 3 - 18 мм. Обрабатывается резанием плохо. |
50ХФА, 50ХГФА |
Для ответственных пружин и рессор, работающих при повышенной температуре (до 300 °С); для пружин, подвергаемых многократным переменным нагрузкам. |
60C2XA |
Для крупных высоконагруженных пружин и рессор ответственного назначения. |
60C2H2A, 65C2BA |
Для ответственных высоконагруженных пружин и рессор, изготовляемых из калиброванной стали и пружинной ленты. |
1.6. Шарикоподшипниковые стали
Основной шарикоподшипниковой сталью является сталь ШХ15 (0,95—1,05% С; 1,30—1,65% Сr).
Для изготовления деталей крупногабаритных подшипников (диаметром более 400 мм), работающих в тяжелых условиях при больших ударных нагрузках, применяют цементуемую сталь 20Х2Н4А. Детали крупногабаритных подшипников (кольца, ролики), изготовляемые из стали 20Х2Н4А.
1.7. Автоматные стали
Автоматные стали: А12, А20, А30, А40Г отличаются от обыкновенных углеродистых конструкционных сталей повышенным содержанием серы и фосфора.
Характерной особенностью автоматных сталей является хорошая обрабатываемость резанием на металлорежущих станках. Это объясняется повышенным содержанием серы, которая образует большое количество включений сернистого марганца MnS, нарушающих сплошность металла. Поверхность обработанных деталей получается чистой и ровной. Стойкость режущего инструмента при обработке автоматных сталей повышается, а скорость резания допускается больше, чем при обработке обыкновенных углеродистых сталей.
1.8. Высокомарганцовистая износостойкая сталь г13л
Эта сталь, содержащая 1—1,4% С и 11—14% Мn и имеет высокое сопротивление износу. Характерным для нее является то, что высокая износостойкость сочетается с высокой прочностью и низкой твердостью. Сталь Г13Л применяют для трамвайных стрелок, щек камнедробилок, козырьков ковшей, черпаков и т. п.
1.9. Жаростойкие и жаропрочные стали и сплавы
К жаростойким относят стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температурах выше 550° С и работающие в ненагруженном или слабонагруженном состоянии.
При высокой температуре в условиях эксплуатации в среде нагретого воздуха, в продуктах сгорания топлива происходит окисление стали (газовая коррозия). На поверхности стали образуется сначала тонкая пленка окислов, которая с течением времени увеличивается и образуется окалина.
Способность стали сопротивляться окислению при высокой температуре называется жаростойкостью.
На интенсивность окисления влияет состав и строение окисной пленки. Для получения плотной (защитной) окисной пленки сталь легируют хромом, а также кремнием или алюминием. Степень жаростойкости зависит от количества находящегося в стали легирующего элемента. Так, например, сталь 15X5 с содержанием 4,5—6,0% хрома жаростойка до температуры 700° С, сталь 12X17 (17% Сг) — до 900° С, сталь 15X28 (28% Сг) — до 1100—1150° С (стали 12X17 и 15X28 являются также и нержавеющими). Еще более высокой жаростойкостью (до 1200° С) обладают сплавы на никелевой основе с хромом и алюминием, например, сплав ХН70Ю (26—29% хрома; 2,8—3,5% алюминия).
Для работы при температурах до 350—400° С применяют обычные конструкционные стали (углеродистые и малолегированные).
Для работы при температуре 400—550° С применяют стали, например 15ХМ, 12Х1МФ. Предназначены главным образом для изготовления деталей котлов и турбин (например, трубы паропроводов и пароперегревателей), нагруженных сравнительно мало, но работающих весьма длительное время (до 100 000 ч).
Эти стали содержат мало хрома и поэтому обладают невысокой жаростойкостью (до 550—600° С).
Для работы при температуре 500—600° С применяют стали: высокохромистые, например 15X11МФ для лопаток паровых турбин; хромокремнистые (называемые сильхромами), например 40Х9С2 для клапанов моторов; сложнолегированные, например 20Х12ВНМФ для дисков, роторов, валов. Для работы при температуре 600 —750° С применяют неупрочняемые (нестареющие) и упрочняемые (стареющие). Нестареющие стали —-это, например, сталь 09Х14Н16Б, предназначаемая для труб пароперегревателей и трубопроводов установок сверхвысокого давления и применяемая после закалки с 1100—1150° С (охлаждение в воде или на воздухе).
Стареющие стали — это сложнолегированные стали, например 45Х4Н14В2М, применяемая для клапанов моторов, деталей трубопроводов, сталь 40Х15Н7Г7Ф2МС—для лопаток газовых турбин.
Для работы при 800—1100 С применяют жаропрочные сплавы на никелевой основе, например ХН77ТЮР, ХН55ВМТФКЮ для лопаток турбин. Эти сплавы стареющие и подвергаются такой же термической обработке (закалке и старению), как и стареющие стали аустенитного класса. Жаростойкость сплавов на никелевой основе до 1200° С.
