
- •1 Оcновні поняття і визначення
- •1.1 Зворотні зв’язки
- •1.2 Класифікація сак
- •1.3 Принцип дії сар
- •1.4 Функціональна схема сар
- •1 0 0 .5 Вимоги, що ставляться до сар
- •2 Статичні і динамічні характеристики об’єктів керування
- •2.1 Лінійні диференціальні рівняння автоматичних систем і їх елементів
- •2.2 Перехідні функції
- •2.3 Передавальні функції
- •2.4 Частотні характеристики
- •2.5 Статичні характеристики типових з’єднань елементів
- •3 Типові алгоритмічні ланки, їх частотні та часові характеристики
- •3.1 Поняття алгоритмічної, типової і елементарної ланок
- •3.2 Типові ланки з розподіленими параметрами
- •3.3 Безінерційна ланка
- •3.4 Інерційна ланка і-го порядку
- •3.5 Інтегруючі ланки
- •3.6 Диференціююча ланка
- •3.7 Інерційні ланки другого порядку
- •3.8 Ланка запізнення
- •4 Стійкість автоматичних систем і показники якості перехідних процесів
- •4.1 Поняття стійкості автоматичних систем керування
- •4.2 Математична оцінка стійкості
- •4.3 Алгебраїчні критерії стійкості
- •4.4 Графо-аналітичний критерій Михайлова
- •4.5 Частотні критерії стійкості
- •4.6 Оцінка стійкості автоматичної системи за її структурою
- •4.7 Синтез систем автоматичного керування, виходячи з умов стійкості
- •4.8 Запас стійкості автоматичної системи
- •4.9 Показники якості перехідних процесів
- •4.10 Методи побудови перехідних процесів
- •4.11 Непрямі оцінки якості перехідних процесів
- •4.12 Інтегральні оцінки перехідних процесів
- •4.13 Розрахунок сталої помилки автоматичної системи
- •4.14 Помилки від задаючих впливів
- •4.15 Коефіцієнти помилки
- •4.16 Помилки від впливу збурення
- •5 Аналіз стійкості нечітких систем керування з нечітким під-регулятором
- •5.1 Твердження проблеми
- •5.2 Узагальнена умова Гурвіца
- •5.3 Еквівалентна система
- •6 Загальні відомості про автоматичні регулятори
- •6.1 Принципи побудови і класифікація автоматичних регуляторів
- •6.2 Математичні моделі і способи реалізації автоматичних регуляторів
- •6.3 Регулятори прямої дії
- •6.4 Пневматичні регулятори
- •6.5 Елементи і вузли пристроїв безперервної дії
- •6.6 Елементи і вузли пристроїв дискретної дії
- •6.7. Регулятори безперервної дії
- •Умова рівноваги елементу порівняння матиме вигляд
- •6.8 Екстремальні регулятори
- •7.1 Регулювання витрати
- •7.2 Регулювання рівня
- •7.3 Регулювання тиску
- •8 Нечітке моделювання багатовимірних нелінійних процесів
- •9 Первинні вимірювачі-перетворювачі технологічних параметрів
- •9.1 Перетворювач-регулятор потенціометричний пп-10
- •Конструктивні особливості
- •Функціональні можливості
- •9.2 Блок перетворення взаємної індуктивності бпви-1
- •9.3 Блоки перетворення сигналів термоопорів бпо-32, бпо-42
- •9.4 Блок перетворення сигналів термопар бпт-22
- •9.5 Блок перетворення сигналів тензодатчиків бпт-2
- •9.6 Перетворювач постійної напруги і струму пнс-1 Перетворювач змінної напруги пнс-2 Перетворювач змінної струму пнс-3
- •9.7 Пневмоелектричний перетворювач пеп-11
- •9.8 Блок перетворення інтерфейсів бпи-485
- •Характеристики інтерфейсу rs-485/rs-422
- •9.9 Блок перетворення інтерфейсів бпи-2к
- •10 Цифрові сар
- •10.1 Функціональна організація цифрових сар з керуючою мікро електронної еом (кмеом)
- •10.2 Реальний масштаб часу цсак з кмеом
- •10.3 Дискретна передавальна функція неперервної частини цсак
- •10.4 Дискретна передавальна функція цифрових коректуючих ланок
- •11 Поняття про синтез автоматичних систем керування технологічними процесами.
- •11.1 Класифікація і загальна характеристика методів синтезу аск.
- •11.2 Основні етапи синтезу аск
- •Cтруктурний синтез багатовимірних систем керування (детерміновані системи)
- •12.1 Математична модель багатовимірної системи керування.
- •Із першого рівняння системи (12.2) знаходимо
- •12.2 Основні властивості об’єктів керування.
- •12.3 Алгоритмічні структури багатовимірних систем керування.
- •12.4 Синтез автоматичних систем керування.
- •12.5 Синтез модального керування
- •Приймаючи до уваги (12.26), отримуємо
- •12.6 Поняття про синтез оптимальних регуляторів.
- •Додаток в
7.2 Регулювання рівня
Рівень рідини, як і витрати, є доволі поширеним вимірюваним і регульованим параметром. В багатьох рідинно-фазних апаратах, ємностях, випарювачах та інших апаратах підтримується рівень рідини, сипучих матеріалів переповнення або рівень розділу фаз з метою уникнення переповнення або спорожнення апарату, а також для забезпечення нормального технологічного режиму їх роботи.
Рівень рідини в резервуарах і ємностях є, як правило, досить інерційним параметром, тому від датчиків не вимагається значної швидкодії.
Крім того, до підтримування рівня у більшості випадків не висуваються жорсткі умови до точності, тому що рівень, у більшості випадків, - допоміжний параметр. У зв’язку з цим, АСР рівня це прості, одноконтурні системи. Це ще зумовлено і тим, що значна частина ОК мають самовирівнювання.
Одначе є випадки, коли рівень рідини є відповідальним параметром і до його вимірювання і регулювання ставляться високі вимоги щодо точності. Це характерно для систем приймання, зберігання і видачі рідин з резервуарних парків, які забезпечують комерційні операції.В цих випадках вимірювання рівня поєднують з корекцією за температурою і гідростатичним розширенням стінок, а також застосовують різноманітні методи підвищення точності вимірювання (методи компенсації та інші).
Об’єкти з регулюванням рівня можна розділити на такі групи:
1. Ємності відкриті або з’єднані з атмосферою, у яких входами є подача і відвод рідини.
2. Ємності під тиском з тими ж входами.
3. Ємності, рівень в яких підтримується випарюванням рідини
(випарювачі).
4. Ємності, в яких регулюється рівень розділу фаз.
Підтримування рівня рідини в резервуарі можна забезпечити, як за рахунок самовирівнювання об’єкта, так і за рахунок зовнішніх систем регулювання.
Самовирівнювання рівня рідини в ємності у більшості випадків не забезпечує необхідний діапазон зміни рівня і може застосовуватись лише на об’єктах, де допускають зміни рівня в широких межах.
Із зовнішніх систем регулювання широко застосовуються системи з використанням регуляторів прямої дії. Вони характерні при регулюванні рівня на всіх блочних установках нафтогазового промислу, зокрема сепараторах. Типові схеми таких систем показані на рис.7.3.
Регулятори, показані на рис.7.3 функціонують за П-законом регулювання. Системи цього типу можна установлювати на мало відповідальних об’єктах з невисоким степенем стабілізації рівня, це зв’язано з малими зусиллями, що забезпечуються поплавком – вимірювачем рівня. Для збільшення потужності вихідного сигналу потрібно збільшувати розміри поплавка – датчика, що не завжди доцільно і можливо.
На об’єктах, де необхідна висока точність стабілізації рівня і надійність спрацювання доцільніше застосовувати системи непрямого регулювання. Оскільки серед систем непрямого регулювання найпоширенішими є АСР з регулюванням за притоком рис.7.4.а і за витоком рис.7.4.б.
В даних АСР доцільно застосовувати регулятори з ПІ-законом регулювання, що знижує залишкову нерівномірність або статичну похибку. При суттєвій інерційності ОК використовують регулятор з ПІД-законом регулювання або вводять в АСР допоміжний контур регулювання з використанням малоінерційних параметрів. До таких параметрів відносяться: витрата рідини у каналі найімовірніших збурень або рівень рідини в першій із послідовно з’єднаних ємностей.
а)
б)
а) зі зміною витрати вхідного потоку
б) зі зміною витрати вихідного потоку
Рисунок 7.4 – АСР рівня рідини в ємності з використанням регулятора прямої дії
а)
б)
а) регулювання за притоком
б) регулювання за витоком
Рисунок 7.5 – АСР рівня з непрямим регулюванням
а)
б)
а) регулювання витрати рідини з корекцією за рівнем;
б) регулювання рівня з корекцією за рівнем;
Рисунок 7.6- Двоконтурні АСР рівня з використанням малоінерційного параметру.
Двоконтурну АСР стабілізації рівня з використанням витрати рідини, як малоінерційного параметру регулювання показано на рис.7.6.а. Її треба розглядати як систему стабілізації витрати з корекцією за рівнем рідини в ємності. На рис.7.6.б показана двоконтурна система стабілізації рівня рідини в останній ємності ланцюжка кожній ємності з використанням малоінерційного рівня в перщій ємності. Її можна трактувати як систему стабілізації рівня в першій ємності з корекцією за рівнем у проміжній (останній) ємності послідовного ланцюга.
Часто ефективною є АСР рівня з регулюванням співвідношення притоку і витоку з корекцією коефіцієнта співвідношення по рівню (рис.7.7).
Рисунок 7.7- АСР рівня з регулюванням співвідношення притоку і витоку.
Рисунок 7.8 – АСР рівня у випарювачі
Для регулювання рівня у випарювачах застосовують АСР, показану на рис.7.8. Рівень тут підтримують за рахунок витрати пари як теплоносія.
В ємностях, де регулюється рівень розділу фаз, до них необхідно віднести сепаратори, в яких від нафти відділяється вода, застосовують системи регулювання за витоком з регуляторами прямої дії з П-законом регулювання. Хоча при необхідності можна застосувати і регулятори непрямої дії з відповідними датчиками розділу фаз.