Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лаб_по_ изображениям.doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
7.5 Mб
Скачать

2.3. Метод центроидного связывания

Данный метод сегментации основан на активном использовании локальной признаковой информации. Идея метода достаточно проста и кратко может быть описана следующим образом [1]. На плоскости изображения выбирается некоторое число стартовых точек, которые размечаются определенным образом, и осуществляется анализ соседних точек. Если для пары точек, например стартовой и соседней с ней, выполняется условие однородности, то соседняя точка получает ту же метку, что и стартовая.

Далее рассматриваются соседи соседей, и процесс разметки производится аналогично. Этот процесс завершается после того, как каждая точка изображения получает какую-либо метку. Если априорно известно число областей сегментации и местоположение стартовых точек (которые должны отстоять на достаточном расстоянии от границ областей), а также простой в вычислительном отношении критерий однородности, то данный метод позволяет построить простые алгоритмы и получить качественные результаты. Указанная ранее априорная информация, как правило, отсутствует, и поэтому практические алгоритмы сегментации не так просты. Рассматриваемый метод в значительно большей степени эмпирический, чем байесовский, и теоретический прогноз результатов работы алгоритма возможен лишь для достаточно простых изображений.

Важными моментами алгоритма являются: вид критерия однородности, способ выбора стартовых точек и способ просмотра соседних точек изображения. Не существует конкретных рекомендаций для выбора стартовых точек. Однако в литературе отмечается, что такие точки не должны быть соседними, а при наличии априорной информации о расположении объектов эта информация должна учитываться [4].

При классификации исходного изображения на объект и фон критерий однородности может иметь следующий вид:

|(i, j)μ| < T, (19)

где μ - среднее значение яркости точек, принадлежащих объекту, T фиксированный порог.

В простейшем случае осуществляется сканирование изображения слева направо и сверху вниз и сравнение значения яркости текущей анализируемой точки со средним значением яркости уже размеченных точек, но не обязательно представляющих завершенный сегмент изображения. Если эти значения достаточно близки (например, в смысле (19)), то анализируемая точка добавляется к сегменту и среднее значение яркости пересчитывается. Если критерий (19) не выполняется, то анализируемая точка считается принадлежащей фону.

Алгоритмам центроидного связывания свойствен ряд недостатков, среди которых можно указать:

  • наличие неопределенности в выборе стартовых точек;

  • зависимость результатов сегментации от порядка просмотра точек изображения;

  • необходимость применения повторной обработки (повторных “проходов” по полю изображения) для ликвидации ложных областей и для слияния в единое целое частей одной области;

  • отсутствие теоретически обоснованных рекомендаций для выбора порога T в зависимостях вида (19).

В то же время этот класс алгоритмов представляет несомненный интерес, потому что является единственным допускающим построчный способ обработки изображений. В лабораторной работе предлагается выбрать одну стартовую точку и просмотр производить вокруг нее. На рис. 8 проиллюстрирована зависимость результатов сегментации от выбора начальной (стартовой) точки.

1

2

Входное изображение (1, 2 -стартовые точки)

Бинарное изображение (стартовая точка 1)

Бинарное изображение (стартовая точка 2)

Рис. 8. Влияние выбора стартовой точки на результаты сегментации

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]