Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Числ_мет_учебник.doc
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
3.98 Mб
Скачать

2.14.2. Аппроксимация ортогональными полиномами

Лучшие по точности результаты при аппроксимации можно получить, если использовать в качестве базисных функций классические ортогональные полиномы Чебышева, Лежандра, Лагерра, Якоби и др.

Полиномы называются ортогональными, если существует некоторый интервал , на котором

, (2.141)

где  весовая функция.

В случае большого количества узлов на значения интегралов (2.141) будут близки к дискретным скалярным произведениям (2.134), так как интегрирование можно приближенно заменить суммированием. В этом случае недиагональные элементы матрицы Грама будут небольшими по абсолютной величине, что уменьшает погрешность решения системы нормальных уравнений.

Для наиболее гладкого представления экспериментальных данных (с минимальным числом и амплитудой выбросов) в качестве базисных функций выбирают ортогональные полиномы Чебышева , которые определены и ортогональны на интервале с весовой функцией .

Для задания полиномов Чебышева используется рекуррентная формула (2.31).

Так как в многочленах Чебышева коэффициент при старших степенях равен (см. п. 2.8, свойство 1) , то это не всегда удобно при оценке вклада в аппроксимирующую функцию старших степеней по величине коэффициентов . В этом случае полиномы Чебышева можно ввести и по другой рекуррентной формуле, позволяющей построить приведенные многочлены Чебышева:

, (2.142)

где , .

Полиномы ортогональны на интервале с такой же весовой функцией, что и .

Весовую функцию, равную единице на интервале , имеют полиномы Лежандра, которые определяются по следующей рекуррентной формуле:

, (2.143)

где , .

Интервал [ ], где заданы узлы таблицы данных , переводится в интервал , где определены и ортогональны полиномы Чебышева и Лежандра с помощью линейного преобразования:

. (2.144)

2.14.3. Аппроксимация ортогональными полиномами дискретной переменной

Если построить систему базисных функций таким образом, чтобы обращались в нуль скалярные произведения на дискретном множестве узловых точек, то матрица Грама будет диагональной и можно избежать численного решения системы нормальных уравнений. В зависимости от распределения погрешности обрабатываемых данных можно построить ортогональные полиномы дискретной переменной с соответствующими дискретными весовыми функциями , . Из классических ортогональных полиномов дискретной переменной известны полиномы Хана, Мейкснера, Кравчука, Шарлье.

Рассмотрим алгоритм построения полиномов Чебышева дискретной переменной, которые являются частным случаем полиномов Хана с единичной весовой функцией.

Полагаем:

(2.145)

, (2.146)

и неизвестный коэффициент определим из условия ортогональности и , то есть

или

. (2.147)

Откуда

. (2.148)

Полином второй степени также представляется в общем виде с неопределенными коэффициентами и :

. (2.149)

Коэффициенты и найдем из условия ортогональности полиномов , то есть , и т.д.

Для полиномов Чебышева дискретной переменной существует двухслойная рекуррентная формула, по которой можно вычислить полином любой степени, зная :

, (2.150)

где

(2.151)

Аппроксимирующая функция определяется, как и ранее, в виде линейной комбинации базисных функций, в качестве которых берутся полиномы Чебышева дискретной переменной :

. (2.152)

Тогда, так как матрица Грама является диагональной, коэффициенты этой линейной комбинации определяются как частное от деления правых частей получающейся системы нормальных уравнений на диагональные элементы этой матрицы, то есть:

. (2.153)

Заметим, что если для улучшения качества аппроксимации возникает необходимость в увеличении числа базисных функций, то не придется пересчитывать коэффициенты , определенные с меньшим значением m.