- •6.19.1. Биполярные транзисторы с изолированным затвором………………...
- •1. Предмет электроники, ее роль в науке и технике
- •2. Полупроводниковые приборы
- •2.1. Электрические свойства полупроводниковых материалов
- •2.2. Механизм электрической проводимости полупроводников
- •2.2.1. Собственная проводимость
- •2.2.2. Примесная проводимость
- •2.3. Электронно-дырочный переход (эдп)
- •2.3.1. Технология изготовления эдп
- •2.3.1.1. Сплавная технология
- •2.3.1.2. Диффузионная технология
- •2.3.2. Эдп при отсутствии внешнего напряжения
- •2.3.3. Эдп при прямом напряжении
- •Iдр iдиф,
- •Iдиф iдр,
- •Iпр iдиф.
- •2.3.4. Эдп при обратном напряжении
- •2.3.4.1. Механизм установления обратного тока при включении
- •3. Полупроводниковые диоды
- •3.1. Вольт-амперная характеристика (вах) диода
- •3.2. Параметры полупроводниковых диодов
- •4. Виды пробоев вентилей
- •4.1. Зеннеровский пробой
- •4.2. Лавинный пробой
- •4.3. Тепловой пробой
- •4.4. Поверхностный пробой
- •5. Основные типы полупроводниковых диодов
- •5.1. Устройство точечных диодов
- •5.2. Устройство плоскостных диодов
- •5.3. Условное обозначение силовых диодов
- •5.4. Конструкция штыревых силовых диодов
- •5.5. Лавинные диоды
- •5.6. Конструкции таблеточных диодов
- •5.7. Стабилитрон (опорный диод)
- •5.7.1 Основные параметры стабилитрона
- •5.7.2 Двухсторонние стабилитроны
- •5.8. Туннельный диод (тд)
- •5.9. Обращенный диод
- •5.9.1. Варикап
- •5.10. Фотодиоды, полупроводниковые фотоэлементы и светодиоды
- •6. Транзисторы
- •Iдиф э Iдиф эр.
- •6.1. Распределение токов в структуре транзистора
- •6.2. Схемы включения транзисторов. Статические вах
- •6.3. Схема с общей базой
- •6.4. Схема с общим эмиттером
- •6.5. Схема с общим коллектором
- •6.6. Транзистор как усилитель электрических сигналов
- •6.7. Краткие характеристики схем включения. Область применения схем
- •6.7.1. Схема с общей базой
- •6.7.2. Схема с общим эмиттером
- •6.7.3. Схема с общим коллектором
- •6.8. Режимы работы транзистора
- •6.9. Пример транзисторного ключа
- •6.10. Малосигнальные и собственные параметры транзисторов
- •6.11. Силовые транзисторные модули
- •6.12. Параметры биполярных транзисторов
- •6.13. Классификация и система обозначений транзисторов
- •6.14. Полевые транзисторы
- •6.15. Вах полевого транзистора с управляющим p-n-переходом
- •6.16. Полевые транзисторы с изолированным затвором
- •6.17. Характеристики транзисторов. Стоковые (выходные) характеристики
- •6.19. Биполярные транзисторы с изолированным затвором (igbt - транзисторы)
- •6.19.1. Биполярные транзисторы с изолированным затвором
- •6.19.2. Силовые модули на основе igbt-транзисторов
- •7. Тиристоры
- •7.1. Переходные процессы включения и выключения тиристора
- •7.2. Лавинные тиристоры (лт)
- •7.3. Специфические типы тиристоров. Оптотиристоры
- •7.4. Тиристоры с улучшенными динамическими свойствами
- •7.4.1. Тиристоры тд
- •7.4.2. Тиристоры тб (быстродействующие)
- •7.4.3. Тиристоры тч (частотные)
- •7.5. Симметричные тиристоры (симисторы)
- •7.6. Полностью управляемые тиристоры (запираемые, выключаемые, двух операционные, gto- тиристоры)
Iдиф э Iдиф эр.
Для оценки свойств транзистора вводится понятие коэффициента инжекции
(6.1)
где Iэр – дырочная составляющая тока эмиттера,
Iэ – ток эмиттера.
2) Дырки, попав в базу, диффундируют к коллекторному переходу П2 (рис. 6.4), поле в котором является ускоряющим для дырок. Дырки, входя в коллекторный переход, захватывают его полем и попадают (экстрагируют) в коллектор, создавая в его цепи коллекторный ток Iк, зависящий от тока эмиттера Iэ. Если толщина базы достаточна мала, то большенство дырок достигнет коллектора, не успев рекомбинеровать с электронами. При этом число дырок, проходящих через коллекторный переход П2, несколько меньше, чем через эмиттерный переход П1. Таким образом Iк Iэ.
3) Ток базы состоит из двух составляющих:
Iб = Iбр + Iбn,
где Iбр – дырочная составляющая тока базы, образованная в результате рекомбенации дырок с электронами,
Iбn – ток, обусловленный прохождением некоторого числа электронов из базы в эмиттер через эмиттерный переход П1
Iбn = Iэn.
Обе эти составляющие образуются вследствие того, что в базу, вместо предшествующих в эмиттер и исчезнувших при рекомбенации электронов от источника напряжения эмиттер-база, входят новые электроны. Ток базы – явление вредное, желательно, чтобы он был как можно меньше. Для его снижения принимают следующие меры: базу делают очень тонкой; уменьшают в сотни раз концентрацию примесей, которая определяет концентрацию электронов.
Iэр = Iбр + Iкр,
где Iэр, Iбр, Iкр – дырочные составляющие соответственно эмиттера, базы, коллектора.
Часть дырок в базе рекомбенирует, но это малая часть, а значит IкрIбр.
Для оценки транзистора вводится понятие коээфициента переноса не основных носителей через базу
,
(6.2)
где Iкр – коллекторный ток, обусловленный дырочной составляющей,
Iэр – эмиттерный ток, обусловленный дырочной составляющей.
Желательно, чтобы 0,960,996, что возможно при сокращении потерь дырок при рекомбенации при более тонкой базе.
Коллекторный ток, обусловленный дырочной составляющей связан с током эмиттера Iэр коэффициентом передачи тока :
,
(6.3)
,
(6.4)
(6.5)
=. (6.6)
Таким образом, для увеличения коэффициента передачи необходимо увеличивать разность концентраций в эмиттере и базе основных носителей заряда и уменьшить толщину базы.
6.1. Распределение токов в структуре транзистора
На рис. 6.5 изображено распределение токов в структуре транзистора.
Рис. 6.5. Распределение токов в структуре транзистора
Наличие коллекторного перехода П2 (рис. 6.5), включенного в обратном направлении, обуславливает протекание обратного тока Iко (вследствие дрейфа не основных носителей заряда). Концентрация не основных носителей зависит от температуры, следовательно, и ток Iко зависит от температуры, поэтому этот ток называется тепловым
Iк = Iэ + Iко.
Принцип действия биполярного транзистора основан на создании транзитного (проходящего) потока носителей заряда из эмиттера в коллектор через базу и управлении коллекторным (выходным) током за счет изменения эмиттерного (входного) тока, следовательно, биполярный транзистор управляется током.
Сопротивление эмиттерного перехода Rэ составляет единицы-десятки Ом, поэтому в эту цепь обычно подается небольшое напряжение. Сопротивление коллекторного перехода Rк составляет сотни кОм – единицы МОм, поэтому в цепь коллектора подводят большое напряжение. В коллекторную цепь возможно включать большие внешние сопротивления. Таким образом, RкRэ.
Вследствие того, что изменение тока эмиттера происходит в цепи с малым сопротивлением, а почти равное ему изменение тока происходит в цепи коллектора, обладающего большим сопротивлением, то мощность, выделяемая на сопротивление Rк, значительно превышает мощность в цепи эмиттера. Следовательно, транзистор обладает свойством усилителя.
