- •6.19.1. Биполярные транзисторы с изолированным затвором………………...
- •1. Предмет электроники, ее роль в науке и технике
- •2. Полупроводниковые приборы
- •2.1. Электрические свойства полупроводниковых материалов
- •2.2. Механизм электрической проводимости полупроводников
- •2.2.1. Собственная проводимость
- •2.2.2. Примесная проводимость
- •2.3. Электронно-дырочный переход (эдп)
- •2.3.1. Технология изготовления эдп
- •2.3.1.1. Сплавная технология
- •2.3.1.2. Диффузионная технология
- •2.3.2. Эдп при отсутствии внешнего напряжения
- •2.3.3. Эдп при прямом напряжении
- •Iдр iдиф,
- •Iдиф iдр,
- •Iпр iдиф.
- •2.3.4. Эдп при обратном напряжении
- •2.3.4.1. Механизм установления обратного тока при включении
- •3. Полупроводниковые диоды
- •3.1. Вольт-амперная характеристика (вах) диода
- •3.2. Параметры полупроводниковых диодов
- •4. Виды пробоев вентилей
- •4.1. Зеннеровский пробой
- •4.2. Лавинный пробой
- •4.3. Тепловой пробой
- •4.4. Поверхностный пробой
- •5. Основные типы полупроводниковых диодов
- •5.1. Устройство точечных диодов
- •5.2. Устройство плоскостных диодов
- •5.3. Условное обозначение силовых диодов
- •5.4. Конструкция штыревых силовых диодов
- •5.5. Лавинные диоды
- •5.6. Конструкции таблеточных диодов
- •5.7. Стабилитрон (опорный диод)
- •5.7.1 Основные параметры стабилитрона
- •5.7.2 Двухсторонние стабилитроны
- •5.8. Туннельный диод (тд)
- •5.9. Обращенный диод
- •5.9.1. Варикап
- •5.10. Фотодиоды, полупроводниковые фотоэлементы и светодиоды
- •6. Транзисторы
- •Iдиф э Iдиф эр.
- •6.1. Распределение токов в структуре транзистора
- •6.2. Схемы включения транзисторов. Статические вах
- •6.3. Схема с общей базой
- •6.4. Схема с общим эмиттером
- •6.5. Схема с общим коллектором
- •6.6. Транзистор как усилитель электрических сигналов
- •6.7. Краткие характеристики схем включения. Область применения схем
- •6.7.1. Схема с общей базой
- •6.7.2. Схема с общим эмиттером
- •6.7.3. Схема с общим коллектором
- •6.8. Режимы работы транзистора
- •6.9. Пример транзисторного ключа
- •6.10. Малосигнальные и собственные параметры транзисторов
- •6.11. Силовые транзисторные модули
- •6.12. Параметры биполярных транзисторов
- •6.13. Классификация и система обозначений транзисторов
- •6.14. Полевые транзисторы
- •6.15. Вах полевого транзистора с управляющим p-n-переходом
- •6.16. Полевые транзисторы с изолированным затвором
- •6.17. Характеристики транзисторов. Стоковые (выходные) характеристики
- •6.19. Биполярные транзисторы с изолированным затвором (igbt - транзисторы)
- •6.19.1. Биполярные транзисторы с изолированным затвором
- •6.19.2. Силовые модули на основе igbt-транзисторов
- •7. Тиристоры
- •7.1. Переходные процессы включения и выключения тиристора
- •7.2. Лавинные тиристоры (лт)
- •7.3. Специфические типы тиристоров. Оптотиристоры
- •7.4. Тиристоры с улучшенными динамическими свойствами
- •7.4.1. Тиристоры тд
- •7.4.2. Тиристоры тб (быстродействующие)
- •7.4.3. Тиристоры тч (частотные)
- •7.5. Симметричные тиристоры (симисторы)
- •7.6. Полностью управляемые тиристоры (запираемые, выключаемые, двух операционные, gto- тиристоры)
5.8. Туннельный диод (тд)
ТД представляет собой полупроводниковый прибор с p-n-переходом, образованным материалами с высокой концентрацией атомов примесей. Электрическая проводимость таких полупроводников приближена к электрической проводимости металла. Условное обозначение туннельного диода и его вольтамперная характеристика приведены на рис. 5.8. Туннельные диоды изготавливаются из германия и арсенида галлия.
Особенностями туннельных диодов являются:
малая толщина запорного слоя;
высокая напряженность электрического поля.
Эти особенности получены в результате использования сильнолегированных полупроводниковых материалов (концентрация примесей составляет 1019-1020 атомов на см3). Такие полупроводники обладают очень малым удельным сопротивлением (в сотни или тысячи раз меньше, чем в обычных диодах) и называются вырожденными.
Если приложить к ЭДП обратное напряжение, то напряженность электрического поля в нем возрастает еще больше, и оно окажется способным вырывать валентные электроны из кристаллической решетки полупроводника p-типа, отрывая их от атомов и перебрасывать через p-n-переход в полупроводник n-типа, где они становятся основными носителями электричества.
а б
Рис. 5.8. Условное обозначение туннельного диода (а) и его
вольтамперная характеристика (б)
В отличие от обычного диода в ТД электроны перемещаются непосредственно из валентной зоны одного полупроводника в свободную зону другого. Энергия, которой они обладают, недостаточна для преодоления потенциального барьера p-n-перехода и они проходят сквозь этот барьер под действием электрического поля высокой напряженности (более 105 в/см) по определенным каналам (туннелям). Такой механизм прохождения электрона через узкий p-n-переход называется туннельным эффектом.
Так как число электронов в валентных связях полупроводника так же велико, как и число свободных электронов в металле, то при включении туннельного диода в обратном направлении, его ВАХ принимает вид металлического проводящего контакта. В ней отсутствуют участки запирания с малым обратным током.
Если к диоду приложить напряжение прямой полярности Uпр, то поле в ЭДП несколько ослабнет, но будет еще достаточным для создания туннельного эффекта. При большем увеличении Uпр туннельный эффект начинает исчезать, что приведет к появлению падающего участка аб (рис. 5.8, б) ВАХ с отрицательным сопротивлением.
При дальнейшем повышении Uпр туннельный эффект полностью исчезает и происходит обычный процесс прохождения тока через p-n-переход и ВАХ становится как у обычного диода.
Туннельный диод нельзя использовать для выпрямления переменного тока, так как он обладает высокой проводимостью при обратном включении. Его применяют для создания и усиления электрических колебаний. На участке аб (рис. 5.8) диод имеет отрицательное сопротивление, которое не вносит дополнительных потерь в электрическую цепь, а компенсирует потери энергии в других элементах за счет энергии источника питания. Поэтому если положительное сопротивление ослабляет электрические сигналы, то отрицательное может их усиливать.
Преимущества ТД как усилителя сигналов: малые размеры; способность работать в широком диапазоне температур и на очень высоких частотах (до 10000 МГц); высокая температурная стабильность и малое потребление энергии.
Основные параметры ТД:
1) Un, In – напряжение и ток пика соответственно, точка а на ВАХ (рис. 5.8, б);
2) Uв, Iв – напряжение и ток впадины, точка б на ВАХ;
3) Unn – напряжение на второй восходящей части ВАХ, большее напряжения впадины, при котором ток равен пиковому, точка в на ВАХ;
4) In/Iв, для выпускаемых диодов In=(0,1-1000) мА, In/Iв=(330).
