- •6.19.1. Биполярные транзисторы с изолированным затвором………………...
- •1. Предмет электроники, ее роль в науке и технике
- •2. Полупроводниковые приборы
- •2.1. Электрические свойства полупроводниковых материалов
- •2.2. Механизм электрической проводимости полупроводников
- •2.2.1. Собственная проводимость
- •2.2.2. Примесная проводимость
- •2.3. Электронно-дырочный переход (эдп)
- •2.3.1. Технология изготовления эдп
- •2.3.1.1. Сплавная технология
- •2.3.1.2. Диффузионная технология
- •2.3.2. Эдп при отсутствии внешнего напряжения
- •2.3.3. Эдп при прямом напряжении
- •Iдр iдиф,
- •Iдиф iдр,
- •Iпр iдиф.
- •2.3.4. Эдп при обратном напряжении
- •2.3.4.1. Механизм установления обратного тока при включении
- •3. Полупроводниковые диоды
- •3.1. Вольт-амперная характеристика (вах) диода
- •3.2. Параметры полупроводниковых диодов
- •4. Виды пробоев вентилей
- •4.1. Зеннеровский пробой
- •4.2. Лавинный пробой
- •4.3. Тепловой пробой
- •4.4. Поверхностный пробой
- •5. Основные типы полупроводниковых диодов
- •5.1. Устройство точечных диодов
- •5.2. Устройство плоскостных диодов
- •5.3. Условное обозначение силовых диодов
- •5.4. Конструкция штыревых силовых диодов
- •5.5. Лавинные диоды
- •5.6. Конструкции таблеточных диодов
- •5.7. Стабилитрон (опорный диод)
- •5.7.1 Основные параметры стабилитрона
- •5.7.2 Двухсторонние стабилитроны
- •5.8. Туннельный диод (тд)
- •5.9. Обращенный диод
- •5.9.1. Варикап
- •5.10. Фотодиоды, полупроводниковые фотоэлементы и светодиоды
- •6. Транзисторы
- •Iдиф э Iдиф эр.
- •6.1. Распределение токов в структуре транзистора
- •6.2. Схемы включения транзисторов. Статические вах
- •6.3. Схема с общей базой
- •6.4. Схема с общим эмиттером
- •6.5. Схема с общим коллектором
- •6.6. Транзистор как усилитель электрических сигналов
- •6.7. Краткие характеристики схем включения. Область применения схем
- •6.7.1. Схема с общей базой
- •6.7.2. Схема с общим эмиттером
- •6.7.3. Схема с общим коллектором
- •6.8. Режимы работы транзистора
- •6.9. Пример транзисторного ключа
- •6.10. Малосигнальные и собственные параметры транзисторов
- •6.11. Силовые транзисторные модули
- •6.12. Параметры биполярных транзисторов
- •6.13. Классификация и система обозначений транзисторов
- •6.14. Полевые транзисторы
- •6.15. Вах полевого транзистора с управляющим p-n-переходом
- •6.16. Полевые транзисторы с изолированным затвором
- •6.17. Характеристики транзисторов. Стоковые (выходные) характеристики
- •6.19. Биполярные транзисторы с изолированным затвором (igbt - транзисторы)
- •6.19.1. Биполярные транзисторы с изолированным затвором
- •6.19.2. Силовые модули на основе igbt-транзисторов
- •7. Тиристоры
- •7.1. Переходные процессы включения и выключения тиристора
- •7.2. Лавинные тиристоры (лт)
- •7.3. Специфические типы тиристоров. Оптотиристоры
- •7.4. Тиристоры с улучшенными динамическими свойствами
- •7.4.1. Тиристоры тд
- •7.4.2. Тиристоры тб (быстродействующие)
- •7.4.3. Тиристоры тч (частотные)
- •7.5. Симметричные тиристоры (симисторы)
- •7.6. Полностью управляемые тиристоры (запираемые, выключаемые, двух операционные, gto- тиристоры)
5.7.1 Основные параметры стабилитрона
К параметрам стабилитрона относятся:
1) напряжение стабилизации Uстаб – соответствует значению в точке р на середине рабочего участка аб (рис. 5.3). В настоящее время стабилитроны изготавливают на напряжение от 5 до 400 В, при токе от 4 до 100 мА;
2) минимальный ток стабилизации Iмин стаб и максимально допустимый ток стабилизации Iмакс стаб.
Значение Iмин стаб определяется необходимой устойчивостью работы, так как при Iобр Iмин стаб лавинный пробой может быть неустойчивым.
При значении Iобр Iмакс стаб происходит сильный нагрев диода и повреждение его от теплового пробоя;
3) динамическое сопротивление стабилитрона rт (Rдиин)
(5.1)
Чем меньше rт, тем лучше стабилизация;
4) температурный коэффициент напряжения ТКН (TKU). Характеризует изменение напряжения стабилизации при изменении температуры на 1С. С возрастанием температуры напряжение стабилизации изменяется.
Рис. 5.6. Зависимость обратной ветви вольтамперной характеристики
от температуры
,
%/С,
(5.2)
,
%/С.
(5.3)
Температурный коэффициент напряжения положителен для стабилитронов, работающих при высоких значениях напряжения (больше 5 В), и отрицателен для низковольтных стабилитронов (напряжение стабилизации меньше 5 В). Это объясняется различием в механизме пробоя широких, на более высоких напряжениях, и узких, низковольтных, p-n-переходов. В широких переходах имеет место лавинные пробои, а в узких – зеннеровские.
При необходимости стабилитроны можно соединять последовательно.
Uст = Uст1+Uст2+...+Uст n.
Параллельное соединение стабилитронов не допускается, так как из всех параллельно соединенных стабилитронов ток будет только в одном, имеющем наименьшее напряжение стабилитрона.
Конструктивно стабилитроны выполняются аналогично выпрямительным диодам.
5.7.2 Двухсторонние стабилитроны
Эти приборы предназначены для ограничения напряжений на элементах электрических цепей и выполняет роль разрядников в электротехнических устройствах. Условное обозначение и конструктивное исполнение двухстороннего стабилитрона изображена на рис. 5.7 а, б соответственно. Прибор можно представить в виде двух встречно включенных лавинных диодов со структурой p-n-p, имеющей два p-n-перехода. Технология изготовления прибора аналогична технологии изготовления лавинных диодов и обеспечивает получение на элементе двух защитных колец.
На рис. 5.7 цифрами обозначено: 1 – вольфрамовые пластины (термокомпенсаторы), 2 – защитные кольца, 3 – область проводимости p-типа, 4 – область проводимости n-типа
ВАХ двухстороннего стабилитрона (рис. 5.7, в) представляет сочетание двух обратных ветвей встречновключенных лавинных диодов, расположенных симметрично относительно начала координат.
а б в
Рис. 5.6. Условное обозначение двухстороннего стабилитрона (а), его конструктивное исполнение (б) и вольтамперная характеристика (в)
