
- •6.19.1. Биполярные транзисторы с изолированным затвором………………...
- •1. Предмет электроники, ее роль в науке и технике
- •2. Полупроводниковые приборы
- •2.1. Электрические свойства полупроводниковых материалов
- •2.2. Механизм электрической проводимости полупроводников
- •2.2.1. Собственная проводимость
- •2.2.2. Примесная проводимость
- •2.3. Электронно-дырочный переход (эдп)
- •2.3.1. Технология изготовления эдп
- •2.3.1.1. Сплавная технология
- •2.3.1.2. Диффузионная технология
- •2.3.2. Эдп при отсутствии внешнего напряжения
- •2.3.3. Эдп при прямом напряжении
- •Iдр iдиф,
- •Iдиф iдр,
- •Iпр iдиф.
- •2.3.4. Эдп при обратном напряжении
- •2.3.4.1. Механизм установления обратного тока при включении
- •3. Полупроводниковые диоды
- •3.1. Вольт-амперная характеристика (вах) диода
- •3.2. Параметры полупроводниковых диодов
- •4. Виды пробоев вентилей
- •4.1. Зеннеровский пробой
- •4.2. Лавинный пробой
- •4.3. Тепловой пробой
- •4.4. Поверхностный пробой
- •5. Основные типы полупроводниковых диодов
- •5.1. Устройство точечных диодов
- •5.2. Устройство плоскостных диодов
- •5.3. Условное обозначение силовых диодов
- •5.4. Конструкция штыревых силовых диодов
- •5.5. Лавинные диоды
- •5.6. Конструкции таблеточных диодов
- •5.7. Стабилитрон (опорный диод)
- •5.7.1 Основные параметры стабилитрона
- •5.7.2 Двухсторонние стабилитроны
- •5.8. Туннельный диод (тд)
- •5.9. Обращенный диод
- •5.9.1. Варикап
- •5.10. Фотодиоды, полупроводниковые фотоэлементы и светодиоды
- •6. Транзисторы
- •Iдиф э Iдиф эр.
- •6.1. Распределение токов в структуре транзистора
- •6.2. Схемы включения транзисторов. Статические вах
- •6.3. Схема с общей базой
- •6.4. Схема с общим эмиттером
- •6.5. Схема с общим коллектором
- •6.6. Транзистор как усилитель электрических сигналов
- •6.7. Краткие характеристики схем включения. Область применения схем
- •6.7.1. Схема с общей базой
- •6.7.2. Схема с общим эмиттером
- •6.7.3. Схема с общим коллектором
- •6.8. Режимы работы транзистора
- •6.9. Пример транзисторного ключа
- •6.10. Малосигнальные и собственные параметры транзисторов
- •6.11. Силовые транзисторные модули
- •6.12. Параметры биполярных транзисторов
- •6.13. Классификация и система обозначений транзисторов
- •6.14. Полевые транзисторы
- •6.15. Вах полевого транзистора с управляющим p-n-переходом
- •6.16. Полевые транзисторы с изолированным затвором
- •6.17. Характеристики транзисторов. Стоковые (выходные) характеристики
- •6.19. Биполярные транзисторы с изолированным затвором (igbt - транзисторы)
- •6.19.1. Биполярные транзисторы с изолированным затвором
- •6.19.2. Силовые модули на основе igbt-транзисторов
- •7. Тиристоры
- •7.1. Переходные процессы включения и выключения тиристора
- •7.2. Лавинные тиристоры (лт)
- •7.3. Специфические типы тиристоров. Оптотиристоры
- •7.4. Тиристоры с улучшенными динамическими свойствами
- •7.4.1. Тиристоры тд
- •7.4.2. Тиристоры тб (быстродействующие)
- •7.4.3. Тиристоры тч (частотные)
- •7.5. Симметричные тиристоры (симисторы)
- •7.6. Полностью управляемые тиристоры (запираемые, выключаемые, двух операционные, gto- тиристоры)
5.5. Лавинные диоды
Лавинным вентилем или диодом называется диод с контролируемым лавинообразованием.
При воздействии обратного напряжения большего, чем напряжение пробоя происходит резкое возрастание обратного тока. Этот ток распределяется равномерно по поверхности p-n- перехода, так как не сосредотачивается в отдельных точках, то не происходит местного теплового пробоя. При этом наступает равномерный лавинный пробой, т.е. электрический разряд через диод. При таком разряде напряжение на диоде поддерживается на прежнем уровне и в p-n- переходе может выделяться энергия большая, чем в обычных диодах. Таким образом, лавинные диоды способны выдерживать напряжение лавинообразованием, вследствие чего перенапряжения прикладываются к другим элементам электрической цепи, менее чувствительным к ним.
Рис. 5.2. Конструктивное исполнение лавинного вентиля: 1 - вольфрамовые пластины; 2 - область проводимости p-типа; 3 - защитное (охранное) кольцо;
4 - область проводимости n-типа
ЭДП изготавливают путем диффузии алюминия, бора и фосфора в кремний по технологии, обеспечивающей однородный состав кремния с равномерным размещением в нем примесей и структурных дефектов(дислокаций), вследствие чего достигается равномерное распределение проводимости по всей площади перехода. При таком выполнении ЭДП с ростом обратного тока увеличивается число локальных участков пробоя (микроплазм), через которые протекает ток. При этом уменьшается плотность тока микроплазм на каждом участке и не происходит теплового пробоя. Таким образом, лавинные диоды при пробое могут рассеивать большую мощность, чем диоды нелавинные.
В кремниевых нелавинных диодах слабыми местами, где лавинный пробой обычно переходит в тепловой, являются участки ЭДП по периметру полупроводникового элемента (структурные дефекты), через которые и проходит обратный ток.
Чтобы предотвратить возможность такого поверхностного пробоя в лавинном диоде, его ЭДП придают ступенчатую форму.
Концентрация примесей в охранном кольце делается значительно меньшей, чем в центральной части, а толщина диффузионного слоя большей (в области защитного кольца она составляет 120160 мкм, в центральной части - 6080 мкм). В результате напряжение пробоя для алюминиевого перехода оказывается большим, чем для борного, что исключает вероятность поверхностного пробоя. Таким образом, в лавинных диодах, при достижении напряжения пробоя, основная часть обратного тока определяется лавинным увеличением числа носителей электричества в центральной низковольтной части ЭДП, в которой ток распределяется равномерно по его поверхности. Наружное высоковольтное кольцо при этом напряжении не пробивается, поэтому диод не выходит из строя.
Отечественные диоды имеют керамический корпус. Анодом лавинного диода служит основание корпуса, катодом – гибкий вывод с наконечником.
Для увеличения рабочего тока диода необходимо улучшать теплоотвод, т.е. улучшать охлаждение полупроводникового элемента, увеличивать площадь p-n-перехода, уменьшать механические напряжения, возникающие в кремниевой пластине в результате теплового расширения при прохождении тока. Все это использовано при создании диодов таблеточной конструкции.