Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций Сети ЭВМ Петров.doc
Скачиваний:
63
Добавлен:
27.11.2019
Размер:
1.08 Mб
Скачать

Беспроводные сети

Беспроводные компьютерные сети — это технология, позволяющая создавать вычислительные сети, полностью соответствующие стандартам для обычных проводных сетей (например, Ethernet), без использования кабельной проводки. В качестве носителя информации в таких сетях выступают радиоволны СВЧ-диапазона.

Стандарт IEEE 802.11 определяет два режима работы сети — Ad-hoc и клиент-сервер. Режим Ad-hoc (иначе называемый называемый «точка-точка») — это простая сеть, в которой связь между станциями (клиентами) устанавливается напрямую, без использования специальной точки доступа. В режиме клиент-сервер беспроводная сеть состоит, как минимум, из одной точки доступа, подключенной к проводной сети, и некоторого набора беспроводных клиентских станций. Поскольку в большинстве сетей необходимо обеспечить доступ к файловым серверам, принтерам и другим устройствам, подключенным к проводной локальной сети, чаще всего используется режим клиент-сервер.

Без подключения дополнительной антенны устойчивая связь для оборудования IEEE 802.11b достигается в среднем на следующих расстояниях: открытое пространство — 500 м, комната, разделенная перегородками из неметаллического материала — 100 м, офис из нескольких комнат — 30 м. Следует иметь в виду, что через стены с большим содержанием металлической арматуры (в железобетонных зданиях таковыми являются несущие стены) радиоволны диапазона 2,4 ГГц иногда могут вообще не проходить, поэтому в комнатах, разделенных подобной стеной, придется ставить свои точки доступа.

Для соединения удаленных локальных сетей (или удаленных сегментов локальной сети) используется оборудование с направленными антеннами, что позволяет увеличить дальность связи до 20 км (а при использовании специальных усилителей и большой высоте размещения антенн — до 50 км). Причем в качестве подобного оборудования могут выступать и устройства Wi-Fi, нужно лишь добавить к ним специальные антенны (конечно, если это допускается конструкцией). В стандарте WiMAX точки доступа связываются между собой на другой частоте (10 – 66 ГГц, тогда как связь с клиентскими устройствами 1,5 – 11 ГГц).

Сравнительная таблица стандартов беспроводной связи

Технология

Стандарт

Скорость

Дальность

Частоты

Wi-Fi

802.11a

54 Мбит/с

до 100 метров

5,0 ГГц

Wi-Fi

802.11b

11 Мбит/с

до 100 метров

2,4 ГГц

Wi-Fi

802.11g

108 Мбит/с

до 100 метров

2,4 ГГц

Wi-Fi

802.11n

300 Мбит/с

до 100 метров

2,5 или 5,0 ГГц

WiMax

802.16d

75 Мбит/с

6-10 км

1,5-11 ГГц

WiMax

802.16e

30 Мбит/с

1-5 км

2-6 ГГц

WiMax

802.16m

100 Мбит/с, до 1 Гбит/с

Bluetooth v. 1.1.

802.15.1

1 Мбит/с

до 10 метров

2,4 ГГц

Bluetooth v. 1.3.

802.15.3

от 11 до 55 Мбит/с

до 100 метров

2,4 ГГц

UWB

802.15.3a

110-480 Мбит/с

до 10 метров

7,5 ГГц

ZigBee

802.15.4

20 до 250 Кбит/с

1-100 м

2,4 ГГц (16 каналов), 915 МГц (10 каналов), 868 МГц (один канал)

Инфракрасный порт

IrDa

16 Мбит/с

0.5 м, односторонняя связь — до 10 метров

Wi-Fi (Wireless Fidelity — «беспроводная точность»)

Wi-Fi был создан в 1991 году NCR Corporation/AT&T (впоследствии — Lucent Technologies и Agere Systems), Нидерланды. Продукты, предназначавшиеся изначально для систем кассового обслуживания, были выведены на рынок под маркой WaveLAN и обеспечивали скорость передачи данных от 1 до 2 Мбит/с.

Установка Wireless LAN рекомендовалась там, где развёртывание кабельной системы было невозможно или экономически нецелесообразно, но технология оказалась настолько удобной, что стала широко применяться и существенно вытеснять проводные соединения. Скорость и надёжность работы повышалась, на данный момент последний из семейства стандартов Wi-Fi IEEE 802.11n был утверждён 11 сентября 2009 года. Теоретически сети стандарта 802.11n способны обеспечить скорость передачи данных до 480 Мбит/с.

Особенно широко Wi-Fi применяется в мобильных устройствах, (КПК, смартфоны, ноутбуки), т.к. применение этой технологии позволяет свободно подключаться к сети в любом месте зоны покрытия.

Принцип работы

Сеть строится по принципу точка доступа – клиенты. Стандарт предусматривает возможность и прямого соединения, но не все устройства поддерживают такой режим.

Точка доступа передаёт свой идентификатор сети (SSID) с помощью специальных сигнальных пакетов каждые 100 мс. Зная SSID сети, клиент может послать запрос на соединение.

В Wi-Fi сетях все пользовательские станции, которые хотят передать информацию через точку доступа (АР), соревнуются за «внимание» последней. Такой подход может вызвать ситуацию при которой связь для более удалённых станций будет постоянно обрываться в пользу более близких станций. Подобное положение вещей делает затруднительным использование таких сервисов как VoIP, которые очень сильно зависят от непрерывного соединения.

Возможно шифрование передаваемых пакетов WEP, WPA и WPA2. Не все устройства поддерживают новые алгоритмы, что снижает безопасность. Для конфиденциальной информации желательно дополнительное шифрование на сетевом уровне (VPN).

Преимущества Wi-Fi

Быстро и без существенных затрат позволяет развернуть сеть и так же быстро убрать, без проведения строительно-монтажных и прочих работ, в том числе вне помещений.

Позволяет иметь доступ к сети мобильным устройствам.

Wi-Fi-устройства широко распространены на рынке.

В отличие от сотовых телефонов, Wi-Fi оборудование может работать в разных странах по всему миру.

Недостатки Wi-Fi

Высокое по сравнению с другими стандартами потребление энергии, что уменьшает время жизни батарей и повышает температуру устройства.

Опасность перехвата пакетов и несанкционированного доступа. Шифрование WEP относительно легко взламывается, а более стойкие WPA и WPA2 поддерживаются не всеми устройствами.

Небольшая дальность. Типичный маршрутизатор Wi-Fi стандарта 802.11b или 802.11g имеет радиус действия 45 м в помещении и 450 м снаружи.

Зависимость от помех, атмосферных явлений, работы высокочастотного оборудования.

Перегрузка оборудования при передаче небольших пакетов данных из-за присоединения большого количества служебной информации.

Лицензионные и частотные ограничения в некоторых странах.

Коммерческий доступ к сервисам на основе Wi-Fi предоставляется в таких местах, как интернет-кафе, аэропорты и кафе по всему миру (обычно эти места называют Wi-Fi-кафе), однако их покрытие можно считать точечным по сравнению с сотовыми сетями. Проекты по покрытию городов сплошной зоной действия Wi-Fi скорее всего так и не будут завершены, вытесняемые более подходящей для этого технологией WiMax.

В настоящий момент непосредственное сравнение Wi-Fi и сотовых сетей нецелесообразно. Телефоны, использующие только Wi-Fi, имеют очень ограниченный радиус действия, поэтому развёртывание таких сетей обходится очень дорого. Тем не менее, развёртывание таких сетей может быть наилучшим решением для локального использования, например, в корпоративных сетях, промзонах, складской логистике и т.п. применений.

Пока коммерческие сервисы пытаются использовать существующие бизнес-модели для Wi-Fi, многие группы, сообщества, города, и частные лица строят свободные сети Wi-Fi, часто используя общее пиринговое соглашение для того, чтобы сети могли свободно взаимодействовать друг с другом.

Точки доступа Wi-Fi не требуют высокой квалификации в настройке и обслуживании, что делает их очень удобными прежде всего для SOHO-сегмента. Из широко представленных на рынке это самая простая и удобная в использовании технология локальных беспроводных сетей. При помощи направленных антенн можно использовать дешёвое Wi-Fi оборудование для соединения локальных сетей в сельской местности. Также возможно объединение в сеть общего доступа точек, принадлежащих различным людям и организациям, создание кампусных и домовых сетей.

Некоторые группы строят свои Wi-Fi-сети, полностью основанные на добровольной помощи и пожертвованиях.

Некоторые небольшие страны и муниципалитеты уже обеспечивают свободный доступ к хот-спотам Wi-Fi и доступ к Интернету через Wi-Fi по месту жительства для всех. Например, Королевство Тонга или Эстония, которые имеют большое количество свободных хот-спотов Wi-Fi по всей территории страны. В Париже OzoneParis предоставляет свободный доступ в Интернет неограниченно всем, кто способствует развитию Pervasive Network, предоставляя крышу своего дома для монтажа оборудования Wi-Fi. Unwire Jerusalem — это проект установки свободных точек доступа Wi-Fi в крупных торговых центрах Иерусалима. Многие университеты обеспечивают свободный доступ к Интернет через Wi-Fi для своих студентов.

Некоторые коммерческие организации предоставляют свободный доступ к Wi-Fi в целях привлечения клиентов. В СНГ бесплатный Wi-Fi доступ в Интернет предоставляет Макдональдс и система кинотеатров Каро-фильм. Некоторые организации предоставляют доступ только своим клиентам (например, печатая текущий ключ шифрования на кассовом чеке).

WiMAX

WiMAX (Worldwide Interoperability for Microwave Access) — телекоммуникационная технология, разработанная с целью предоставления универсальной беспроводной связи на больших расстояниях для широкого спектра устройств (от рабочих станций и портативных компьютеров до мобильных телефонов). Основана на стандарте IEEE 802.16, который также называют Wireless MAN.

Область использования

WiMAX подходит для решения следующих задач:

Соединения точек доступа Wi-Fi друг с другом и другими сегментами Интернета.

Обеспечения беспроводного широкополосного доступа как альтернативы выделенным линиям и DSL.

Предоставления высокоскоростных сервисов передачи данных и телекоммуникационных услуг.

Создания точек доступа, не привязанных к географическому положению.

WiMAX позволяет осуществлять доступ в Интернет на высоких скоростях, с гораздо большим покрытием, чем у Wi-Fi сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL- и выделенные линии, а также локальные сети. В результате подобный подход позволяет создавать масштабируемые высокоскоростные сети в рамках целых городов.

Проблема последней мили всегда была одной из самых острых для связистов. К настоящему времени появилось множество технологий последней мили, и перед любым оператором связи стоит задача выбора технологии, оптимально решающей задачу доставки любого вида трафика своим абонентам. Универсального решения этой задачи не существует, у каждой технологии есть своя область применения, свои преимущества и недостатки. Однако технология WiMax, совместившая в себе преимущества ADSL и Wi-Fi, сейчас активно завоёвывает рынок пользовательского Интернета.

Фиксированный и мобильный вариант WiMAX

Набор преимуществ присущ всему семейству WiMAX, однако его версии существенно отличаются друг от друга. Разработчики стандарта искали оптимальные решения как для фиксированного, так и для мобильного применения, но совместить все требования в рамках одного стандарта не удалось. Хотя ряд базовых требований совпадает, нацеленность технологий на разные рыночные ниши привела к созданию двух отдельных версий стандарта (вернее, их можно считать двумя разными стандартами). Каждая из спецификаций WiMAX определяет свои рабочие диапазоны частот, ширину полосы пропускания, мощность излучения, методы передачи и доступа, способы кодирования и модуляции сигнала, принципы повторного использования радиочастот и прочие показатели. А потому WiMAX-системы, основанные на версиях стандарта IEEE 802.16 e и d, практически несовместимы. Краткие характеристики каждой из версий приведены ниже.

802.16-2004 (известен также как 802.16d и фиксированный WiMAX). Спецификация утверждена в 2004 году. Используется ортогональное частотное мультиплексирование (OFDM), поддерживается фиксированный доступ в зонах с наличием либо отсутствием прямой видимости. Пользовательские устройства представляют собой стационарные модемы для установки вне и внутри помещений, а также PCMCIA-карты для ноутбуков. В большинстве стран под эту технологию отведены диапазоны 3,5 и 5 ГГц.

802.16-2005 (известен также как 802.16e и мобильный WiMAX). Спецификация утверждена в 2005 году. Это — новый виток развития технологии фиксированного доступа (802.16d). Оптимизированная для поддержки мобильных пользователей версия поддерживает ряд специфических функций, таких как хэндовер, idle mode и роуминг. Применяется масштабируемый OFDM-доступ (SOFDMA), возможна работа при наличии либо отсутствии прямой видимости.

Основное различие двух технологий состоит в том, что фиксированный WiMAX позволяет обслуживать только «статичных» абонентов, а мобильный ориентирован на работу с пользователями, передвигающимися со скоростью до 120 км/ч. Мобильность означает наличие функций роуминга и «бесшовного» переключения между базовыми станциями при передвижении абонента (как происходит в сетях сотовой связи).

Многие телекоммуникационные компании делают большие ставки на использование WiMAX для предоставления услуг высокоскоростной связи. И тому есть несколько причин.

Во-первых, технологии семейства 802.16 позволят экономически более эффективно (по сравнению с проводными технологиями) не только предоставлять доступ в сеть новым клиентам, но и расширять спектр услуг и охватывать новые труднодоступные территории.

Во-вторых, беспроводные технологии многим более просты в использовании, чем традиционные проводные каналы. WiMAX и Wi-Fi сети просты в развёртывании и по мере необходимости легко масштабируемы. Этот фактор оказывается очень полезным, когда необходимо развернуть большую сеть в кратчайшие сроки. К примеру, WiMAX был использован для того чтобы предоставить доступ в Сеть выжившим после цунами, произошедшего в декабре 2004 года в Индонезии (Aceh). Вся коммуникационная инфраструктура региона была выведена из строя и требовалось оперативное восстановление услуг связи для всего региона.

С изобретением мобильного WiMAX все больший акцент делается на разработке мобильных устройств. В том числе специальных телефонных трубок (похожи на обычный мобильный смартфон), и компьютерной периферии (USB радио модулей и PC card).

Принцип работы

В общем виде WiMAX сети состоят из следующих основных частей: базовых и абонентских станций, а также оборудования, связывающего базовые станции между собой

Для соединения базовой станции с абонентской используется высокочастотный диапазон радиоволн от 1,5 до 11 ГГц. В идеальных условиях скорость обмена данными может достигать 70 Мбит/с, при этом не требуется обеспечения прямой видимости между базовой станцией и приемником.

Между базовыми станциями устанавливаются соединения (прямой видимости), использующие диапазон частот от 10 до 66 ГГЦ, скорость обмена данными может достигать 120 Мбит/c. При этом по крайней мере одна базовая станция подключается к сети провайдера с использованием классических проводных соединений.

Структура сетей семейства стандартов IEEE 802.16 схожа с традиционными GSM сетями (базовые станции действуют на расстояниях до десятков километров, для их установки не обязательно строить вышки — допускается установка на крышах домов при соблюдении условия прямой видимости между станциями).

Каждому подключающемуся к точке доступа клиенту выделяется отдельный слот, что позволяет обеспечить полосу пропускания независимо от нагрузки сети (в отличие от Wi-Fi)

Сопоставления WiMAX и Wi-Fi далеко не редкость, возможно, потому, что эти термины созвучны, название стандартов, на которых основаны эти технологии, похожи (стандарты IEEE, оба начинаются с «802.»), а также обе технологии используют беспроводное соединение и используются для подключения к интернету (каналу обмена данными). Но несмотря на это, эти технологии направлены на решение различных задач.

WiMAX это система дальнего действия (несколько километров), которая обычно использует лицензированные частоты для предоставления соединения с интернетом конечного пользователя. Разные стандарты семейства 802.16 обеспечивают разные виды доступа, от мобильного (схож с передачей данных с мобильных телефонов) до фиксированного (альтернатива проводному доступу, при котором беспроводное оборудование пользователя привязано к местоположению).

Wi-Fi это система более короткого действия, обычно покрывающая десятки метров, которая использует нелицензированные диапазоны частот для обеспечения доступа к сети. Обычно Wi-Fi используется пользователями для доступа к их собственной локальной сети, которая может быть и не подключена к Интернету. Если WiMAX можно сравнить с мобильной связью, то Wi-Fi скорее похож на стационарный беспроводной телефон.

WiMAX и Wi-Fi имеют совершенно разный механизм Quality of Service (QoS). WiMAX использует механизм, основанный на установлении соединения между базовой станцией и устройством пользователя. Каждое соединение основано на специальном алгоритме планирования, который может гарантировать параметр QoS для каждого соединения. Wi-Fi, в свою очередь, использует механизм QoS подобный тому, что используется в Ethernet, при котором пакеты получают различный приоритет. Такой подход не гарантирует одинаковый QoS для каждого соединения.

Из-за дешевизны и простоты установки, Wi-Fi часто используется для предоставления клиентам быстрого доступа в Интернет различными организациями. Развёртывание сети WiMax сходно с созданием сети сотового оператора – требует квалифицированного персонала, регистрации в органах радиочастотного надзора, установки дорогостоящего оборудования базовых станций. Коммерческое применение этих технологий также пошло различными путями – если к сетям Wi-Fi может подключиться любой имеющий аппаратуру данного стандарта, операторы WiMax предпочитают продавать устройства, "привязанные" к их сети (как делали и некоторые сотовые операторы на начальном этапе развития). Появится ли роуминг в коммерческих WiMax сетях – пока неизвестно, хотя технических проблем для этого нет.

Bluetooth

Bluetooth переводится как синий зуб, названа в честь датского короля Харальда I Синезубого - производственная спецификация беспроводных персональных сетей (WPAN).

Bluetooth обеспечивает обмен информацией между такими устройствами как карманные и обычные персональные компьютеры, мобильные телефоны, ноутбуки, принтеры, цифровые фотоаппараты, мышки, клавиатуры, джойстики, наушники, гарнитуры на надёжной, недорогой, повсеместно доступной радиочастоте для ближней связи.

Bluetooth позволяет этим устройствам сообщаться, когда они находятся в радиусе до 10-100 метров друг от друга (дальность очень сильно зависит от преград и помех), даже в разных помещениях.

Харальд Синезубый, король Дании и части Норвегии, который объединил противоречащие датские племена в единое королевство. Смысл названия в том, что Bluetooth делает то же самое с протоколами связи, объединяя их в один универсальный стандарт

Логотип Bluetooth является сочетанием двух нордических рун: «хаглаз» (Hagall) - аналог латинской H и «беркана» (Berkanan) - латинская B.

Спецификация Bluetooth была разработана группой Bluetooth Special Interest Group (Bluetooth SIG)[1][6], которая была основана в 1998 году. В неё вошли компании Ericsson, IBM, Intel, Toshiba и Nokia. Впоследствии Bluetooth SIG и IEEE достигли соглашения, на основе которого спецификация Bluetooth стало частью стандарта IEEE 802.15.1 (дата опубликования — 14 июня 2002 года). Работы по созданию Bluetooth компания Ericsson Mobile Communication начала в 1994 году.

Радиосвязь Bluetooth осуществляется в ISM-диапазоне (Industry, Science and Medicine), который используется в различных бытовых приборах и беспроводных сетях (свободный от лицензирования диапазон 2,4-2,4835 ГГц). В Bluetooth применяется метод расширения спектра со скачкообразной перестройкой частоты[9] (англ. Frequency Hopping Spread Spectrum, FHSS). Метод FHSS прост в реализации, обеспечивает устойчивость к широкополосным помехам, а оборудование стоит недорого.

Согласно алгоритму FHSS, в Bluetooth несущая частота сигнала скачкообразно меняется 1600 раз в секунду. Последовательность переключения между частотами для каждого соединения является псевдослучайной и известна только передатчику и приёмнику, которые каждые 625 мкс (один временной слот) синхронно перестраиваются с одной несущей частоты на другую. Таким образом, если рядом работают несколько пар приёмник-передатчик, то они не мешают друг другу. Этот алгоритм является также составной частью системы защиты конфиденциальности передаваемой информации: переход происходит по псевдослучайному алгоритму и определяется отдельно для каждого соединения. Протокол Bluetooth поддерживает не только соединение «точка-точка», но и соединение «точка-многоточка».

Устройства версий 1.0 (1998) и 1.0B имели плохую совместимость между продуктами различных производителей. В 1.0 и 1.0B была обязательной передача адреса устройства (BD_ADDR) на этапе установления связи, что делало невозможной реализацию анонимности соединения на протокольном уровне и было основным недостатком данной спецификации.

В Bluetooth 1.1 было исправлено множество ошибок, найденных в 1.0B, добавлена поддержка для нешифрованных каналов, индикация уровня мощности принимаемого сигнала (RSSI).

В версии 1.2 была добавлена технология адаптивной перестройки рабочей частоты (AFH), что улучшило сопротивляемость к электромагнитной интерференции (помехам) путём использования разнесённых частот в последовательности перестройки. Также увеличилась скорость передачи и добавилась технология eSCO, которая улучшала качество передачи голоса путём повторения повреждённых пакетов.

Bluetooth версии 2.0 был выпущен 10 ноября 2004 г. Имеет обратную совместимость с предыдущими версиями 1.x. Основным нововведением стала поддержка EDR (Enhanced Data Rate) для ускорения передачи данных. Номинальная скорость EDR около 3 Мбит/с, однако на практике это позволило повысить скорость передачи данных только до 2,1 Мбит/с.

Стандартная скорость передачи данных использует Гауссово Кодирование со сдвигом частот (GFSK) модуляцию радиосигнала, при скорости передачи в 1 Мбит/с. EDR использует сочетание GFSK и PSK-модуляцию с двумя вариантами.

Bluetooth 3.0 + HS

3.0 + HS спецификация [12] была принята Bluetooth SIG 21 апреля 2009 года. Она поддерживает теоретическую скорость передачи данных до 24 Мбит/с. Её основной особенностью является добавление AMP (Асимметричная Мультипроцессорная Обработка).

Модули с поддержкой новой спецификации соединяют в себе две радиосистемы: первая обеспечивает передачу данных в 3 Мб/с (стандартная для Bluetooth 2.0) и имеет низкое энергопотребление; вторая совместима со стандартом 802.11 и обеспечивает возможность передачи данных со скоростью до 24 Мбит/с (сравнима со скоростью сетей Wi-Fi). Выбор радиосистемы для передачи данных зависит от размера передаваемого файла. Небольшие файлы передаются по медленному каналу, а большие - по высокоскоростному. Bluetooth 3.0 использует более общий стандарт 802.11 (без суффикса), т.е. не совместим с такими спецификациями Wi-Fi, как 802.11b/g или 802.11n.

Bluetooth 4.0

В декабре 2009 года Bluetooth SIG анонсировала стандарт Bluetooth 4.0. Эта технология предназначена прежде всего для различных беспроводных датчиков.

В Bluetooth 4.0 достигается низкое энергопотребление за счёт использования специального алгоритма работы. Передатчик включается только на время отправки данных, что обеспечивает возможность работы от одной батарейки в течение нескольких лет. Стандарт предоставляет скорость передачи данных в 1 Мбит/с при размере пакета данных 8-27 байт.

Первый чип с поддержкой Bluetooth 3.0 и Bluetooth 4.0 был выпущен компанией ST-Ericsson в конце 2009 года. Массовый выпуск Bluetooth-модулей ожидается в I квартале 2010 года.

Профиль — набор функций или возможностей, доступных для определённого устройства Bluetooth. Для совместной работы Bluetooth-устройств необходимо, чтобы все они поддерживали общий профиль. Разработано несколько десятков профилей Bluetooth для подключения различных типов устройств, таких как наушники, сетевые адаптеры, принтеры и т.п.

Инициализацией, касательно bluetooth, принято называть процесс установки связи. Её можно разделить на три этапа:

Генерация ключа Kinit

Генерация ключа связи (он носит название link key и обозначается, как Kab)

Аутентификация

Первые два пункта входят в так называемую процедуру паринга.

Паринг (PAIRING) — или сопряжение. Процесс связи двух (или более) устройств с целью создания единой секретной величины Kinit, которую они будут в дальнейшем использовать при общении. В некоторых переводах официальных документов по bluetooth можно также встретить термин «подгонка пары».

Перед началом процедуры сопряжения на обеих сторонах необходимо ввести PIN-код. Обычная ситуация: два человека хотят связать свои телефоны и заранее договариваются о PIN-коде.

Kinit формируется по алгоритму E22, который оперирует следующими величинами:

BD_ADDR — уникальный адрес BT-устройства. Длина 48 бит (аналог MAC-адреса сетевой карты PC)

PIN-код и его длина

IN_RAND. Случайная 128-битная величина

Для создания ключа связи Kab устройства обмениваются 128-битными словами LK_RAND(A) и LK_RAND(B), генерируемыми случайным образом. Далее следует побитовый XOR с ключом инициализации Kinit. И снова обмен полученным значением. Затем следует вычисление ключа по алгоритму E21.

На данном этапе pairing заканчивается и начинается последний этап инициализации bluetooth — Mutual authentication или взаимная аутентификация. Основана она на схеме «запрос-ответ». Одно из устройств становится верификатором, генерирует случайную величину AU_RAND(A) и засылает его соседнему устройству (в plain text), называемому предъявителем (claimant — в оригинальной документации). Как только предъявитель получает это «слово», начинается вычисление величины SRES по алгоритму E1, и она отправляется верификатору. Соседнее устройство производит аналогичные вычисления и проверяет ответ предъявителя. Если SRES совпали, то, значит, всё хорошо, и теперь устройства меняются ролями, таким образом процесс повторяется заново.

При прослушивании эфира возможно перехватить общение устройств и расшифровать код, таким образом, BT-соединение не является безопасным.

В большинстве устройств безопасность на уровне служб, доступных через bluetooth, не обеспечивается на должном уровне. Большинство разработчиков делает ставку именно на безопасность установления сопряжения. Поэтому последствия действий злоумышленника могут быть различными: от кражи записной книжки телефона до установления исходящего вызова с телефона жертвы и использования его как прослушивающего устройства.

Радиус работы устройств BT2 не превышает 15 метров, для BT1 до 100 м (класс А). Эти числа декларируются стандартом для прямой видимости, в реальности не стоит ожидать работу на расстоянии более 10-20 метров. Применение BT для подключения, например, ноутбука или КПК к домашней сети возможно, но скорость и качество связи значительно уступают Wi-Fi. Ниша BT – беспроводные гарнитуры и наушники телефонов, подключение различных датчиков (например, GPS-приёмника) и т.п. связь короткого действия. Из этой ниши BT практически вытеснил IrDA – передачу данных при помощи инфракрасного излучения. Сейчас IrDA встречается в основном в пультах дистанционного управления бытовой техникой, но и там тоже внедряется BT, не требующий точного позиционирования пульта и позволяющий двусторонний обмен данными.

Мультиплексирование в сетях цифровой связи.

Мультиплексирование – это передача по одной физической линии нескольких логических потоков. Возникло оно в голосовой телефонии по причине того, что в стоимости создания линии основную часть составляют работы по собственно прокладке, а цена оконечных устройств относительно мала. Это позволяет при прокладке одной дорогой высокоскоростной линии затратить существенно меньше средств, чем на прокладку N низкоскоротных.

Принцип действия мультиплексора прост: пропускная способность высокоскоростной линии делится на N низкоскоростных.

поступающие по нескольким входящим низкоскоростным линиям сигналы передаются в отведенном для каждого из них частотном диапазоне или интервале времени по высокоскоростной исходящей линии. На противоположном конце высокоскоростной линии эти сигналы вычленяются, или демультиплексируются.

В соответствии со способом уплотнения технологии мультиплексирования можно разделить на две основные категории: мультиплексирование с разделением по частоте (Frequency Division Multiplexing, FDM) и мультиплексирование с разделением по времени (Time Division Multiplexing, TDM). При частотном мультиплексировании частотный спектр делится на логические каналы, причем каждый пользователь получает этот канал в свое распоряжение на время разговора. При временном мультиплексировании пользователям периодически выделяется вся полоса, но только на краткий период времени.

Синхронное мультиплексирование.

Характеристики каналов плезиохронной (PDH) и синхронной (SDH) иерархий.

Принцип действия мультиплексора прост: поступающие по нескольким входящим низкоскоростным линиям сигналы передаются в отведенном для каждого из них частотном диапазоне или интервале времени по высокоскоростной исходящей линии. На противоположном конце высокоскоростной линии эти сигналы вычленяются, или демультиплексируются.

В соответствии со способом уплотнения технологии мультиплексирования можно разделить на две основные категории: мультиплексирование с разделением по частоте (Frequency Division Multiplexing, FDM) и мультиплексирование с разделением по времени (Time Division Multiplexing, TDM). При частотном мультиплексировании частотный спектр делится на логические каналы, причем каждый пользователь получает этот канал в свое распоряжение на время разговора. При временном мультиплексировании пользователям периодически выделяется вся полоса, но только на краткий период времени.

Как известно, человеческая речь может быть адекватно передана частотами в диапазоне от 300 до 3400 Гц, т. е. необходимый частотный интервал составляет 3100 Гц. Однако при мультиплексировании нескольких голосовых каналов каждому из них выделяется диапазон в 4000 Гц, чтобы они не перекрывались. Частота каждого канала увеличивается каждая на свою величину, кратную 4 кГц, затем каналы комбинируются. В результате каналы разносятся по всему спектру частот данной линии. Каналы отделены друг от друга так называемыми защитными интервалами.

ИКМ

Прежде чем человеческую речь можно будет передавать по цифровой сети, ее надо преобразовать в дискретную форму. Это достигается с помощью импульсно-кодовой модуляции (Pulse-Code Modulation). Поэтому в современных цифровых телефонных сетях связи временное мультиплексирование тесно связано с импульсно-кодовой модуляцией.

Частота дискретизации должна вдвое превышать максимальную частоту спектра частот аналогового сигнала для его корректного воспроизведения, таким образом, измерения амплитуды должны производиться 8000 раз в секунду в случае человеческой речи. Значение амплитуды приближается 8-разрядным двоичным числом, поэтому скорость передачи должна составлять 64 кбит/с. Как следствие, в цифровых сетях информационный канал на 64 кбит/с - базовый для исчисления скорости всех более емких каналов связи.

При мультиплексировании с разделением по времени каждое устройство или входящий канал получают в свое распоряжение всю пропускную способность линии, но только на строго определенный промежуток времени. Последнее значение соответствует циклу дискретизации, так как при ИКМ каждую 1/8000 долю секунды необходимо производить измерение амплитуды аналогового сигнала. Время передачи восьмиразрядного значения мгновенной амплитуды называется квантом времени (time slot) и равно длительности передачи восьми импульсов (один для каждого бита). Последовательность квантов времени, следующих с вышеуказанным интервалом, образует временной канал. Совокупность каналов за один цикл дискретизации составляет кадр.

В Европе, как и в остальном мире, за исключением США и Японии, стандартной системой является ИКМ-32/30 (или E-1) с 32 временными каналами по 64 кбит/с, в которой 30 каналов используются в качестве информационных для передачи голоса, данных и т. д., а два - в качестве служебных, причем один из служебных каналов предназначен для сигнализации (служебных сигналов установления связи), другой - для синхронизации. Как нетрудно подсчитать, общая емкость системы составляет 2,048 Мбит/с.

Система E-1 образует так называемую первичную группу. Вторичную группу E-2 образуют 4 канала E-1 общей емкостью 8,448 Мбит/с, третичную систему E-3 - четыре канала E-2 (или шестнадцать каналов E-1) общей емкостью 34,368 Мбит/с, а четверичную группу - четыре канала E-3 общей емкостью 139,264 Мбит/с. Эти системы образуют европейскую плезиохронную цифровую иерархию.

Необходимость принятия единого стандарта для систем связи в Европе и Америке, а также потребность в повышении максимальной скорости передачи и встроенных средствах управления сетью связи привели к разработке синхронной цифровой иерархии SDH (к сожалению, североамериканский вариант этого стандарта под названием SONET несколько отличается от европейского, хотя эти различия не столь существенны, как в случае, например, иерархии каналов T-1, T-2... и E-1, E-2...).

В SDH синхронный транспортный модуль (STM-1) образует нижний уровень иерархии. Он эквивалентен синхронному транспортному сигналу STS-3c в иерархии SONET с емкостью 155,52 Мбит/с. Четыре модуля STM-1 мультиплексируются в STM-4 (=STS-12c) c емкостью 622,08 Мбит/с, а четыре модуля STM-4 - в STM-12 (=STS-48c) с емкостью 2,488 Гбит/с. Иерархия определяет и более высокие уровни.

Мультиплексирование осуществляется побайтно, а не побитно, т. е., например, когда четыре потока данных STM-1 объединяются в STM-4, мультиплексор сначала отправляет один байт из первого потока, затем один байт из второго и т. д. по кругу.

Одно из наиболее важных отличий синхронной от плезиохронной иерархии - это возможность выделения нужного канала вплоть до уровня E-1 без демультиплексирования всего транспортного сигнала. Это привело к появлению принципиально иного типа мультиплексоров - мультиплексоров с добавлением и выделением отдельных каналов (в английской терминологии - add-drop multiplexer, а в русской технической литературе их кратко называют мультиплексорами ввода/вывода).

Кроме того, многие мультиплексоры стали выполнять и функции кроссовой коммутации (впрочем, может быть и наоборот, но это уже спор о курице и яйце). Мультиплексоры с кроссовой коммутацией (cross-connect multiplexor) позволяют осуществлять концентрацию и разделение потоков (функции мультиплексирования и демультиплексирования) наряду с переключением цифровых сигналов с одного канала на другой в соответствии с определенными правилами (функции коммутации).

Плезиохронная цифровая иерархия (PDH, Plesiochronous Digital Hierarchy) — цифровой метод передачи данных и голоса, основанный на временном разделении канала и технологии представления сигнала с помощью импульсно-кодовой модуляции (ИКМ).

Синхронная цифровая иерархия (СЦИ: англ. SDH — Synchronous Digital Hierarchy) — это система передачи данных, основанная на синхронизации по времени передающего и принимающего устройства.

В начале 80-х годов было разработано 3 разных системы PDH, американская, европейская и японская. Несмотря на одинаковые принципы, в системах использовались различные коэффициенты мультиплексирования на разных уровнях иерархий.

В PDH используется поэтапное мультиплексирование потоков, потоки более высокого уровня собираются методом чередования бит. То есть, например, чтобы вставить первичный поток в третичный, необходимо сначала демультиплексировать третичный до вторичных, затем вторичный до первичных, и только после этого будет возможность произвести сборку потоков заново. Если учесть, что при сборке потоков более высокого уровня добавляются дополнительные биты выравнивания скоростей, служебные каналы связи и прочая неполезная нагрузка, то процесс терминирования потоков низкого уровня превращается в весьма сложную процедуру, требующую сложных аппаратных решений.

Один из типичных применений PDH – цифровой поток E1, широко используемый в телефонии.

Цикл потока Е1 состоит из 32 канальных интервалов, нумеруемых от 0 до 31. Тридцать канальных интервалов (1—15 и 17—31) используются для передачи трафика (например голоса), а два — нулевой и шестнадцатый — для передачи служебной информации, таких как синхронизации и сигнальные сообщения вызовов.

Система SDH обеспечивает стандартные уровни информационных структур, то есть набор стандартных скоростей. Базовый уровень скорости — STM-1 155,52 Mбит/с. Цифровые скорости более высоких уровней определяются умножением скорости потока STM-1, соответственно, на 4, 16, 64 и т. д., до 40 гигабит.

Вся информация в системе SDH передается в контейнерах. Контейнер представляет собой структурированные данные, передаваемые в системе. Если система PDH генерирует трафик, который нужно передать по системе SDH, то данные SDH сначала структурируются в контейнеры, а затем к контейнеру добавляется заголовок и указатели, в результате образуется синхронный транспортный модуль STM-1. По сети контейнеры STM-1 передаются в системе SDH разных уровней (STM-n), но во всех случаях раз сформированный STM-1 может только складываться с другим транспортным модулем, т.е. имеет место мультиплексирование транспортных модулей.

Еще одно важное понятие, непосредственно связанное с общим пониманием технологии SDH - это понятие виртуального контейнера VC.В результате добавления к контейнеру трактового(маршрутного) заголовка получается виртуальный контейнер. Виртуальные контейнеры находятся в идеологической и технологической связи с контейнерами, так что контейнеру C-12 соответствует виртуальный контейнер VC-12 (передача потока E1), C-3 - VC-3 (передача потока E3), C-4 - контейнер VC-4 (передача потока STM-1).

Cеть передачи SDH и существующая сеть PDH могут работать совместно, пока идет установление сети передачи SDH. Сеть SDH может быть использована для передачи услуг PDH, а также сигналов других иерархий, таких как ATM, Ethernet [1] и FDDI.

Низкоскоростной сигнал PDH (например, 2Мбит/с) может быть напрямую добавлен или извлечен из сигнала SDH. Это устраняет необходимость использования большого количества оборудования мультиплексирования/демультиплексирования, повышает надежность и уменьшает вероятность ухудшения качества сигнала, снижает стоимость, потребление мощности и сложность оборудования.