
- •5.1. Принцип действия и преобразование энергии в машинах постоянного тока
- •5.2. Двигатели постоянного тока
- •5.3. Генераторы постоянного тока
- •5.4. Вентильные двигатели
- •5.5. Упражнения и контрольные вопросы к главе 5.
- •Глава 4. Синхронные машины
- •4.1. Электромеханическое преобразование энергии в синхронных машинах
- •4.2. Специальные синхронные двигатели
- •4.3. Упражнения и контрольные вопросы к главе 4.
- •Глава 3. Асинхронные машины
- •3.1. Общие с сведения и электромеханическое преобразование энергии в асинхронных машинах
- •3.2. Асинхронные трехфазные двигатели
- •3.3. Асинхронные двухфазные управляемые двигатели
- •3.4. Упражнения и контрольные вопросы к главе 3.
- •Глава 2. Преобразование энергии в электрических машинах
- •2.1. Принцип электромеханического преобразования энергии в электрической машине
- •2.2. Однонаправленное преобразование энергии в электрических машинах
- •2.3. Электромеханическое преобразование энергии с помощью вращающегося магнитного поля. Потери энергии. Кпд .
- •2.4. Классификация электрических машин
- •2.5. Упражнения и контрольные вопросы к главе 2.
- •1. Теоретические основы электромеханики
- •1.1. Уравнения движения. Электромеханические аналогии
- •1.2. Электромеханические аналогии уравнения Лагранжа-Максвелла
- •1.3. Энергия электрического и магнитного полей. Силы и моменты, возникающие при электромеханическом преобразовании энергии
- •1.4. Электромагнитные, электродинамические и электростатические преобразователи.
- •1.4.1. Электромагнитные преобразователи.
- •1.4.2. Электродинамические преобразователи.
- •1.4.3. Электростатические преобразователи.
- •1.5. Классификация электромеханических преобразователей
- •1.6. Представление электромеханических преобразователей как преобразователей сигналов (информации)
- •1.7. Анализ простейшего электромеханического преобразователя.
- •1.8. Упражнения и контрольные вопросы к главе 1.
- •Содержание
- •Глава 2. Преобразование энергии в электрических машинах
- •Глава 3. Асинхронные машины
- •Глава 4. Синхронные машины
- •Глава 5. Электрические машины постоянного тока
- •Леонтьев а.Г. Электронная книга по электромеханике
- •2. Машины постоянного тока
- •2.1 Принцип действия машины постоянного тока
- •2.2 Устройство машины постоянного тока
- •2.3 Э.Д.С. И электромагнитный момент машины постоянного тока
- •2.4 Обмотки якоря
- •2.5 Магнитное поле машины постоянного тока
- •2.6. Круговой огонь на коллекторе
- •2.7 Коммутация
- •2.8 Генераторы постоянного тока
- •2.9 Параллельная работа генераторов постоянного тока
- •2.10 Электродвигатели постоянного тока
- •2.11 Пуск в ход электродвигателей постоянного тока
- •2.12 Принципы регулирования частоты вращения двигателей постоянного тока
- •2.13 Работа электродвигателей постоянного тока в тормозных режимах
- •2.14 Современные способы регулирования частоты вращения электродвигателей постоянного тока
- •2.15 Универсальные коллекторные двигатели
2.11 Пуск в ход электродвигателей постоянного тока
Для пуска двигателей постоянного тока могут быть применены три способа:
1) прямой пуск, при котором обмотка якоря подключена непосредственно к сети;
2) реостатный пуск с помощью пускового реостата, включаемого в цепь якоря для ограничения тока при пуске;
3) пуск путем плавного повышения напряжения, подаваемого на обмотку якоря.
Прямой пуск. Обычно в двигателях постоянного тока падение напряжения Iном∑r во внутреннем сопротивлении цепи якоря составляет 5–10% от Uном, поэтому при прямом пуске ток якоря Iп = Uном/∑r = (10 ÷ 20) Iном, что создает опасность поломки вала машины и вызывает сильное искрение под щетками. По этой причине прямой пуск применяют в основном для двигателей малой мощности (до нескольких сотен ватт), в которых сопротивление ∑r относительно велико, и лишь в отдельных случаях–для двигателей с последовательным возбуждением мощностью в несколько киловатт. При прямом пуске таких двигателей Iп = (4 ÷ 6) Iном.
Переходный процесс изменения частоты вращения n и тока якоря ia в процессе пуска определяется нагрузкой двигателя и его электромеханической постоянной времени Тм. Для установления характера изменения n и ia при пуске двигателя с параллельным возбуждением будем исходить из уравнений:
;
(2.82а)
,
(2.82б)
где J – момент инерции вращающихся масс электродвигателя и сочлененного с ним производственного механизма; Мн–тормозной момент, создаваемый нагрузкой.
Из (2.82б) определяем ток якоря
.
(2.83)
Подставляя его значение в (2.82а), получаем
(2.84а)
,
(2.84б)
или
U где
–
частота вращения при идеальном холостом
ходе;
уменьшение
частоты вращения при переходе
от холостого хода к нагрузке; nн
= n0 – Δnн–установившаяся
частота вращения при нагрузке двигателя;
–
электромеханическая постоянная времени,
определяющая скорость протекания
переходного процесса.
При этом Iн = Мн/(смФ) – установившийся ток якоря после окончания процесса пуска, определяемый нагрузочным моментом Мн.
Решая уравнение (2.84б), получаем
.
(2.85а)
Постоянную интегрирования А находим из начальных условий: при t = 0; n = 0 и А = – nн. В результате имеем
.
(2.85б)
Рис. 2.65 – Переходный процесс изменения частоты вращения и тока якоря при прямом пуске двигателя постоянного тока
Зависимость тока якоря от времени при пуске двигателя определяется из (2.83). Подставляя в него значение
,
(2.85в)
полученное из (2.846) и (2.856), и заменяя nн = n0 – Δn, имеем
.
(2.86а)
Учитывая значение Δnн, n0, Тм и Мн/смФ, получим
,
(2.86б)
где Iнач = U/∑r – начальный пусковой ток.
На рис. 2.65 приведены зависимости изменения тока якоря и частоты вращения (в относительных единицах) при прямом пуске двигателя с параллельным возбуждением. Время переходного процесса при пуске принимается равным (3–4) Тм. За это время частота вращения n достигает (0,95 – 0,98) от установившегося значения nн, а ток якоря Iа также приближается к установившемуся значению.
Реостатный пуск. Этот способ получил наибольшее распространение. В начальный момент пуска при n = 0 ток Iп = U/(∑r + rп). Максимальное сопротивление пускового реостата rп подбирается так, чтобы для машин большой и средней мощностей ток якоря при пуске Iп = (1,4 ÷ 1,8) Iном, а для машин малой мощности Iп = (2 ÷ 2,5) Iном. Рассмотрим процесс реостатного пуска на примере двигателя с параллельным возбуждением. В начальный период пуск осуществляется по реостатной характеристике 6 (рис. 2.66, а), соответствующей максимальному значению сопротивления rп пускового реостата; при этом двигатель развивает максимальный пусковой момент Мп.макс.
Рис. 2.66 – Изменение частоты вращения и момента при реостатном пуске двигателей с параллельным и последовательным возбуждением
Регулировочный реостат rр.в в этом случае выводится так, чтобы ток возбуждения Iв и поток Ф были максимальными. По мере разгона момент двигателя уменьшается, так как с увеличением частоты вращения растет э. д. с. Е и уменьшается ток якоря Ia=(U – E)/(∑r +rп). При достижении некоторого значения Мп.мин часть сопротивления пускового реостата выводится, вследствие чего момент снова возрастает до Мп.макс. При этом двигатель переходит на работу по реостатной характеристике 5 и разгоняется до достижения Mп.мин. Таким образом, уменьшая постепенно сопротивление пускового реостата, осуществляют разгон двигателя по отдельным отрезкам реостатных характеристик 6,5,4,3 и 2 (см. жирные линии на рис. 2.66, а) до выхода на естественную характеристику 1. Средний вращающий момент при пуске Мп.ср = 0,5 (Мп.макс +Мп.мин) = const, вследствие чего двигатель разгоняется с некоторым постоянным ускорением. Таким же образом пускается в ход двигатель с последовательным возбуждением (рис. 2.66, б). Количество ступеней пускового реостата зависит от жесткости естественной характеристики и требований, предъявляемых к плавности пуска (допустимой разности Mп.макс – Мп.мин).
Пусковые реостаты рассчитывают на кратковременную работу под током.
На рис. 2.67 показаны зависимости тока якоря ia, электромагнитного момента М, момента нагрузки Мн и частоты вращения n при реостатном пуске двигателя (упрощенные диаграммы).
Рис. 2.67 – Переходный процесс изменения частоты вращения, момента и тока якоря при реостатном пуске двигателя постоянного тока
При выводе отдельных ступеней пускового реостата ток якоря ia достигает некоторого максимального значения, а затем уменьшается согласно уравнению (2.85б) до минимального значения. При этом электромеханическая постоянная времени и начальный ток будут иметь различные для каждой ступени пускового реостата значения:
;
В соответствии с изменением тока якоря изменяется и электромагнитный момент М. Частота вращения n изменяется согласно уравнению
,
(2.86в)
где nнач–начальная частота вращения при работе на соответствующей ступени пускового реостата.
Заштрихованная на рис. 2.67 область соответствует значениям динамического момента Мдин = М – Мн, обеспечивающего разгон двигателя до установившейся частоты вращения.
Пуск путем плавного повышения питающего напряжения. При реостатном пуске возникают довольно значительные потери энергии в пусковом реостате. Этот недостаток можно устранить, если пуск двигателя осуществлять путем плавного повышения напряжения, подаваемого на его обмотку. Но для этого необходимо иметь отдельный источник постоянного тока с регулируемым напряжением (генератор или управляемый выпрямитель). Такой источник используют также для регулирования частоты вращения двигателя.