
Ответы на вопросы к зачету (ноябрь 2012)
■ – окончание вопроса, определения, примера, доказательства и т. п.
▲ – окончание ответа на весь экзаменационный вопрос.
Вопросы 1-3: обязательны на оценку 3
Вопросы 4-8: обязательны на оценку 4
Вопросы 9-10: обязательны на оценку 5
Ответы даны довольно развернуто. Настолько подробно отвечать на зачете необязательно.
Вопрос 1. Дать определения операциям умножения и деления для натуральных чисел. Обобщить их на случай целых чисел. Определить модуль числа.■
Будем рассматривать НАТУРАЛЬНЫЕ числа (1, 2, 3, 4, …)
Определение:
Произведением
(умножением) числа a
на число b
является число, равное
,
то есть
■
Например,
Можно доказать, что
Например:
то есть:
Для облегчения счета нужно суммировать большее число.
Пример: найти 3∙12.
Сравниваем 3 и 12. 12 больше 3. Значит, будем суммировать 3 раза число 12:
3∙12 = 12 + 12 + 12 = 36 ■
Определение.
Пусть есть два числа a
и
b.
Разделим число а
на b
равных частей. Тогда каждая из полученных
частей будет являться результатом
деления числа а
на число b.
Обозначение:
или
. ■
Определение.
Отношением
числа а
к числу b
называется такое число с,
что:
.
■
Интерпретация
операции деления.
Отношением
числа а
к числу b
называется число, равное произведению
и а.
То есть
. ■
Теперь рассмотрим ЦЕЛЫЕ числа (…, -4, -3, -2, -1, 0, 1, 2, 3, 4, …)
При умножении на 0 любого числа результатом будет 0.
Делить на 0 нельзя. Результатом будет либо бесконечность, либо неопределенность.
Абсолютное значение числа (модуль числа): если есть число, состоящее из каких-либо цифр и знака перед этим числом («+» или «–», причем «+» обычно не пишут), то его абсолютное значение – это число, состоящее из тех же цифр (которые стоят в том же порядке), перед которым стоит знак «+».■
Обозначение абсолютного значения числа a является запись |a|
Примеры: |5| = 5 ; |0| = 0 ; |-3| = 3 ; |-75| = 75 ; |16| = 16 ; |25| = 25 ; |-17| = 17
Теперь правило знаков при умножении двух целых ненулевых чисел:
(положительное)∙(отрицательное) = (отрицательное)
(отрицательное)∙(положительное) = (отрицательное)
(положительное)∙(положительное) = (положительное)
(отрицательное)∙(отрицательное) = (положительное)
Правило знаков при делении одного целого ненулевого числа на другое целое ненулевое число абсолютно аналогично правилу для умножения:
(положительное):(отрицательное) = (отрицательное)
(отрицательное):(положительное) = (отрицательное)
(положительное):(положительное) = (положительное)
(отрицательное):(отрицательное) = (положительное)
Определение: при умножении двух целых ненулевых чисел a и b сначала ставим знак в соответствии с правилом знаков, а потом пишем значение произведения абсолютных значений этих чисел. Полученное число называется произведением чисел a и b. То есть:
■
Примеры:
Определение: при делении целого ненулевого числа a на целое ненулевое число b сначала ставим знак в соответствии с правилом знаков, а потом пишем значение |a|:|b|. Полученное число называется отношением числа a к числу b. То есть:
■▲
Вопрос 2. Что такое уравнение с одной переменной? Привести простейшие примеры.■
Определение: Это равенство, которое может содержать числа, операторы (плюс, минус, умножить, поделить, возведение в степень и т. д.), а также переменную (обычно обозначается одной буквой).■
Соответственно, решить такое уравнение – означает найти все возможные значения переменной.
Для того, чтобы это сделать, можно преобразовать уравнение так, чтобы с одной стороны равенства осталась только одна переменная (возможно с каким-нибудь оператором, например, возведением в степень), а с другой – число.