
- •Практическое занятие 1
- •1. Источники излучения
- •1.1 Типы источников излучения. Принципы их классификации
- •1.2 Симметричные и несимметричные источники излучения
- •1.3 Источники с различным спектральным распределением энергии
- •1.3.1 Тепловые источники излучения
- •1.3.2 Газоразрядные источники
- •1.3.3 Источники излучения на основе явления люминесценции
- •1.3.4 Оптические квантовые генераторы (лазеры)
- •Что такое лазер.
- •1.1 Оптический квантовый генератор или лазер.
- •Лазер в работе.
- •Энциклопедия Кольера лазер
- •Лазер http://ru.Wikipedia.Org/wiki/Лазер#.D0.9f.D1.80.D0.B8.D0.Bd.D1.86.D0.B8.D0.Bf_.D0.
- •[Править] Основные даты
- •[Править] Принцип действия
- •[Править] Устройство лазера
- •[Править] Активная среда
- •[Править] Система накачки
- •[Править] Оптический резонатор
- •[Править] Классификация лазеров
- •[Править] Использование лазеров
- •[Править] Фильмы
- •[Править] См. Также
- •Синтетический иттрий-алюминиевый гранат (иаг)
- •Образцы минерала
- •Гранат Из истории камня
- •Выбор ювелирных изделий по видам драгоценных камней
- •Тема3. Основы светотехники
- •Тема 1. Характеристики и общие свойства оптического излучения.
- •Тема 2. Световые измерения, фотометрия.
- •Скорость света
- •Оптические свойства света
- •Преломление
- •Источники света
- •Радиометрия и световые измерения
- •Давление света
- •История теорий света в хронологическом порядке Античные Греция и Рим
- •Cветимость небесного тела
- •[Править] Таблица
- •Тема 3. Источники оптического излучения.
- •Тема 4. Приемники оптического излучения.
- •Тема 5. Фотометрические свойства тел и сред.
- •Тема 6. Основы учения о цвете.
- •Тема 7. Измерение цвета, метрологическое обеспечение цветовых измерений.
- •Практическое занятие 1
- •История развития источников света
- •1. Источники излучения
- •1.1 Типы источников излучения. Принципы их классификации
- •1.2 Симметричные и несимметричные источники излучения
- •1.3 Источники с различным спектральным распределением энергии
- •1.3.1 Тепловые источники излучения
- •1.3.2 Газоразрядные источники
- •1.3.3 Источники излучения на основе явления люминесценции
- •1.3.4 Оптические квантовые генераторы (лазеры)
- •Список литературы
- •Практическое занятие 1
- •Глава 1
- •1.1. Что такое цвет
- •1.1.1. Спектр как характеристика цвета
- •1.1.2. Феномен цветового видения
- •1.2. Классификация цветов
- •Тема 3. Основы светотехники.
- •Тема 4. Учение о цвете.
- •Цвет как феномен зрения и объект изучения
- •Глаз и ухо человека воспринимают излучения по-разному
- •Цвет можно только видеть
- •Цвет без света
- •2.Общие сведения о чувствительности глаза.
- •3.Световая чувствительность.
- •2. Источники света
- •1.Введение
- •2.Общие свойства излучений и их преобразование
- •5.Основы учения о цвете: природа и психология цвета
- •5.1.Основные понятия и определения
- •5.1.1.Определение понятия "цвет"
- •5.1.2.Спектральные цвета
- •6.Представление цвета
- •6.1.Цветовое пространство
- •6.1.1.Общие сведения о цветовом пространстве
- •6.1.2.Цветовой охват. Цветовое тело
- •6.1.3.Определение цвета как векторной величины
- •6.2.Системы спецификации
- •6.2.1.Визуальные методы описания цветов по эталонным образцам
- •6.2.2.Принципы построения цветового пространства систем спецификации
- •6.2.3.Систематизация систем спецификации
- •6.2.4.Пигмент-смесь
- •6.2.5.Цвет-смесь
- •7.Колориметрические системы
- •7.1.Основные колориметрические системы
- •7.1.1.Принципы измерения цвета
- •7.1.2.Основы построения колориметрических систем
- •7.1.3.Основная физиологическая система кзс
- •7.1.4.Основы колориметрической системы (ciergb)
- •7.1.5.Основы стандартной колориметрической системы xyz (ciexyz)
- •7.1.5.1.Кривые сложения . Диаграмма цветности ху
- •7.1.5.2.Определение характеристик цвета по диаграмме ху
- •7.1.6.Переход от координат одной колориметрической системы к координатам другой
- •7.1.7.Расчет координат цветов излучений произвольной мощности и несамосветящихся тел
- •7.1.8.Стандартные излучения и источники света
- •8.Практические аспекты применения цвета
- •8.4.Общие сведения о цветной фотографии. Цветные фотографические материалы. Их строение. Получение изображения на цветных фотоматериалах
- •9.Библиографический список
- •Тема 5. Цветные изображения.
- •Желтоватый жёлто--зелёный
Скорость света
Скорость света в вакууме определяется в точности 299792458 м/с (около 300 000 км в секунду). Фиксированное значение скорости света в СИ связано с тем, что метр в настоящее время определяется в терминах скорости света. Все виды электромагнитного излучения, как полагают двигаются с точно такой же скоростью в вакууме.
Различные физики пытались измерить скорость света на протяжении всей истории. Галилей пытался измерить скорость света в семнадцатом веке. Ранний эксперимент по измерению скорости света был проведен Оле Рёмером, датским физиком, в 1676 году. С помощью телескопа Рёмер наблюдал движение Юпитера и одной из его лун Ио. Отмечая различия в очевидной период орбиты Ио, он подсчитал, что свету требуется около 22 минут, чтобы пересечь диаметр орбиты Земли.[1] Тем не менее, её размер не был известен в то время. Если бы Рёмер знал диаметр орбиты Земли, он бы получил значение скорости, равное 227000000 м/с.
Другой, более точный способ, измерения скорости света выполнил в Европе Ипполит Физо в 1849 году. Физо направлен луч света в зеркало на расстоянии нескольких километров. Вращающееся зубчатое колесо было помещено на пути светового луча, который путешествовал от источника к зеркалу и затем возвращаося к своему источнику. Физо обнаружил, что при определенной скорости вращения, луч будет проходить через один пробел в колесе на пути и следующий разрыв на обратном пути. Зная расстояние до зеркала, число зубьев на колесе, и скорость вращения, Физо удалось вычислить скорость света 313000000 м/с.
Леон Фуко использовал эксперимент, который использовал вращающееся зеркало, чтобы получить значение 298000000 м/с в 1862 году. Альберт А. Майкельсон проводил эксперименты на определение скорости света с 1877 г. до своей смерти в 1931 году. Он улучшил метод Фуко в 1926 году с использованием усовершенствованных вращающихся зеркал для измерения времени которое потребовалось свету, чтобы попутешествовать с горы Уилсон до горы Сан - Антонио в Калифорнии. Точные измерения дали скоростью 299796000 м/с.
Эффективная скорость света в различных прозрачных веществах, содержащих обычную материю, меньше, чем в вакууме. Например, скорость света в воде составляет около 3/4 того, что в вакууме. Тем не менее, замедление процессов в веществе, как полагают, происходит не от фактического замедления частицы света, а от их поглощения и переизлучения заряженными частиц в веществе.
Как крайний пример замедления света, можно сказать, что двум независимым группам физиков удалось "полностью остановить" свет, пропуская ее через конденсат Бозе-Эйнштейна на основе рубидия,[2] Тем не менее слово "остановить" в этих экспериментах относится только к свету, хранящемуся в возбужденных состояниях атомов, а затем повторно излучается в произвольное более позднее время, как вынужденное вторым лазерным импульсом излучение. Во времена, когда свет "остановился", он перестал быть светом.
Время распространения светового луча в масштабной модели Земля-Луна. Для преодоления расстояния от поверхности Земли до поверхности Луны свету требуется 1,255 с.