Скачиваний:
194
Добавлен:
02.05.2014
Размер:
1.06 Mб
Скачать

Полупроводниковые

диоды

I.Общая информация

Полупроводниковый диод – прибор, имеющий два вывода для включения в электрическую цепь и обладающий способностью хорошо пропускать через себя электрический ток одного направления и плохо - противоположного направления. Это свойство диода используют, например, в выпрямителях для преобразования переменного тока в постоянный (ток одного направления).

Слово "диод" образовалось от греческой приставки "ди" - "дважды" и сокращения слова "электрод".

Строение и принцип действия

Полупроводниковый диод представляет собой полупроводниковую пластинку с двумя областями разной проводимости: электронной (n- типа) и дырочной (p- типа). Между ними - разделяющая граница, называемаяp-n – переходом (область на границе двух полупроводников с различными типами электропроводности). Рабочий элемент - кристалл германия, обладающий проводимостью n–типа за счёт небольшой добавки донорной примеси.

Полупроводники стали настоящей золотой жилой техники, когда из них научились делать слоистые структуры.

Выращивая слой n-полупроводника на пластинкеp-полупроводника, мы получим двухслойный полупроводник сp-n-переходом между ними. Если к каждой половине припаять по соединительному проводу, то получится полупроводниковый диод, который действует на ток как вентиль: в одну сторону хорошо пропускает ток, а в другую сторону почти не пропускает.

П

Рисунок 1

олупроводниковые диоды изготовляют из германия, кремния, селена и других веществ.

Как возникает выпрямляющий запирающий слой? Образование слоя начинается с того, что вp-половине больше дырок, а вn-половине больше электронов. Разность плотности носителей зарядов начинается уравновешиваться через переход: дырки проникают вn-половину, электроны вp-половину. Рассмотрим, как создаетсяp-nпереход при использовании донорной примеси.

Этот переход не удастся получить путем механического соединения двух полупроводников различных типов, т.к. при этом получается слишком большой зазор между полупроводниками. Эта толщина должна быть не больше межатомных расстояний. Поэтому в одну из поверхностей образца вплавляют индий. Вследствие диффузии атомов индия в глубь монокристалла германия у поверхности германия преобразуется область с проводимостью р-типа. Остальная часть образца германия, в который атомы индия не проникли, по-прежнему имеет проводимость n-типа. Между областями возникаетp-nпереход. В полупроводниковом диоде германий служит катодом (отрицательным электродом), а индий - анодом (положительным электродом). На рисунке 1 показано прямое (б) и обратное (в) подсоединение диода.

Процессы в зоне проводимости

Электронно-дырочный переход обладает свойством несимметричной проводимости, т.е. представляет собой нелинейное сопротивление. Работа почти всех полупроводниковых приборов, применимых в радиоэлектронике, основана на использовании свойств одного или нескольких p-n переходов.

Существенная особенность полупроводников состоит в том, что в них при наличии примесей наряду с собственной проводимостью возникает дополнительная — примеснаяпроводимость. Вp–n– переходе носители заряда образуются при введении в кристалл акцепторной илидонорнойпримеси. Изменяя концентрацию примеси, можно значительно изменять число носителей заряда того или иного знака. Благодаря этому можно создавать полупроводники с преимущественной концентрацией либо отрицательно, либо положительно заряженных носителей.

С помощью внешнего источника тока можно повысить или понизить внешний потенциальный барьер. Если к диоду приложить прямое напряжение, т.е. положительный полюс соединить сp-половиной, то внешняя электрическая сила начнёт действовать против двойного слоя, и диод пропускает ток, который быстро растёт с увеличением напряжения. Если же изменить полярность проводников, то напряжение падает почти до нулевой отметки. Если диод подключить в цепь переменного напряжения, то он будет служить как выпрямитель, т.е. на выходе будет постоянное пульсирующее напряжение, по направлению в одну сторону (от плюса к минусу). Для того чтобы сгладить амплитуду, или как её ёщё называют "пиковое значение" пульсации тока, эффективно добавить параллельно диоду конденсатор.

Диод хорошо пропускает ток, когда его отрицательный электрод соединен с отрицательным полюсом источника напряжения (батареи), а положительный с положительным полюсом, т.е. когда на диод подается напряжение прямой полярности, или, короче, прямое напряжение. В этом случае электроны в n- области полупроводниковой пластинки будут двигаться к положительному полюсу батареи, т.е. к границе сp- областью; в то же время "дырки" вp- области будут двигаться к отрицательному полюсу батареи и, следовательно, к границе сn- областью.

В результате вблизи p-nперехода произойдет накопление положительных и отрицательных зарядов, и поэтому сопротивление перехода уменьшится. При напряжении противоположной (обратной) полярности, когда положительный полюс батареи соединен сn- областью, а отрицательный сp- областью, электроны вn- области и "дырки" вp- области движутся от границыp-n– перехода. Вследствие этого происходит уменьшение положительных и отрицательных зарядов вблизиp-nперехода, и его сопротивление увеличивается. Это и означает, что при переменном напряжении ток через диод в одном направлении будет большей силы, чем в другом, т.е. в цепи появится практически ток одного направления - произойдет выпрямление переменного тока.

Наряду с выпрямительными свойствами p-nпереход обладает емкостью, зависящей от значения и полярности приложенного напряжения. При прямом напряжении емкость диода больше, чем при обратном. С увеличением обратного напряжения емкость диода уменьшается.

Изготовление

Один из способов изготовления диода состоит в следующем. На поверхности квадратной пластинки площадью 2-4 см2и толщиной в несколько долей миллиметра, вырезанной из кристалла полупроводника сn-проводимостью, например, германия, расплавляют кусочек индия и помещают в печь. При высокой температуре (около 5000С) индий вплавляется в пластинку германия, образуя в ней область дырочной проводимости. К самой пластине германия и к затвердевшей "капле" индия припаивают два проволочных вывода электродов и прибор заключают в герметический и непрозрачный корпус, чтобы защититьp-nпереход от воздействия влаги и света. Индий крепко сплавляется с пластинкой. При этом атомы индия проникают (диффундируют) в толщу пластинки, образуя в ней область с преобладанием дырочной проводимости. Получается полупроводниковый прибор с двумя областями различного типа проводимости, а между ними p-n-переход. Чем тоньше пластинка полупроводника, чем меньше сопротивление диода в прямом направлении, тем больше выправленный диодом ток. Контактами диода служат капелька индия и металлический диск или стержень с выводными проводниками.

Область с электропроводностью р-типа имеет более высокую концентрацию примеси, нежели основная пластинка сравнительно высокоомного германия, и поэтому является эмиттером. К основной пластинке германия и к индию обычно припаиваются проволочки из никеля. Если за исходный материал взят высокоомный германий р-типа, то в него вплавляют сурьму и тогда получается эмиттерная область n-типа. Следует отметить, что сплавным методом получают так называемые резкие или ступенчатые р-n– переходы, в которых толщина области изменения концентрации примесей значительно меньше толщины области объемных зарядов, существующих в переходе.

После сборки транзистора для предотвращения вредных воздействий воздуха и света кристалл германия помещают в герметический корпус. Устройство и схематическое изображение полупроводникового диода:

VD

Большинство полупроводниковых диодов выполняют на основе несимметричных р-n– переходов. Низкоомную область диодов называютэмиттером, а высокоомную –базой. Для создания переходов с вентильными свойствами используютp-n-,p-i-,n-i– переходы, а также переходы металл-полупроводник. На рисунке 3 представлены структуры планарно-эпитаксиального (а) и сплавного (б) диодов.

а) б)

Структуры планарно-эпитаксиального (а) и сплавного (б) диодов.

Рисунок 3.

Общие сведения (по назначению и характеристикам)

Выпрямительные приборы довольно часто требуются в промышленности. Например выпрямители нужны для правильной работы бытовой техники (т.к. почти все электроприборы потребляют постоянное напряжение. Это телевизоры, радиоприёмники, видеомагнитофоны и т.д.). Также полупроводниковые диоды нужны для расшифровки видео, радио, фото и других сигналов в частотно-электрические сигналы, для детектирования слабых радиосигналов, например, в радиоприемниках, для выделения и обработки электрических сигналов в различных автоматических устройствах и ЭВМ. С помощью этого свойства полупроводников мы смотрим телевизор или слушаем радио.

Служат для преобразования и генерирования электрических колебаний. Диоды обладают большой надежностью, но граница их применения от –70 до 125 С. Их используют в основном для модуляции колебаний высокой частоты и для измерительных приборов. Для любого диода существуют некоторые предельно допустимые пределы прямого и обратного тока, зависящие от прямого и обратного напряжения, и определяющие его выпрямляющие и прочностные свойства.

В радиосхемах наряду с двухэлектродными лампами в настоящее время для выпрямления электрического тока все больше применяют полупроводниках диоды, так как они обладают рядом преимуществ.

_______________________________________________________________________________

В электронной лампе носители заряда электроны возникают за счет нагревания катода. В p-n переходе носители заряда образуется при введении в кристалл акцепторной или донорной примеси. Таким образом, здесь отпадает необходимость источника энергии для получения носителей заряда. В сложных схемах экономия энергии, получается за счет этого, оказывается весьма значительной. Кроме того, полупроводниковые выпрямители при тех же значениях выпрямленного тока более миниатюрны, чем ламповые.

По сравнению с электронными лампами у полупроводниковых диодов имеются существенные достоинства:

  1. Малый вес и малые размеры.

  2. Отсутствие затраты энергии на накал.

  3. Большой срок службы (до десятков тысяч часов).

  4. Большая механическая прочность (стойкость к тряске, ударам и другим видам механических перегрузок).

  5. Различные устройства (выпрямители, усилители, генераторы) с полупроводниковыми приборами имеют высокий КПД, так как потери энергии в самих приборах незначительны.

Вместе с тем полупроводниковые диоды в настоящее время обладают следующими недостатками:

  1. Параметры и характеристики отдельных экземпляров приборов данного типа имеют значительный разброс.

  2. Свойства приборов сильно зависят от температуры.

  3. Работа полупроводниковых диодов резко ухудшается под действием радиоактивного излучения.

Вольтамперная характеристика и параметры

Нелинейные свойства диода видны при рассмотрении его вольтамперной характеристики (ВАХ). В отличие от характеристики идеального р-n– перехода, описываемой соотношением

(пунктирная кривая на рис.4), характеристика реального диода (сплошная кривая на рис.4) в области прямых напряжений Uрасполагается несколько ниже из-за падения части приложенного напряжения на объемном сопротивлении базы диодаr. Токназываюттепловым током илиоб- ратным током насыщения. Это отличие от идеализированной кривой обусловлено тем, что тепловой токпри обратном включении составляет лишь часть обратного тока диода. При прямом включении существенное влияние на ход ВАХ оказывает падение напряжения на сопротивлении базы диода, которое начинает проявляться уже при токах, превышающих 2-10 мА.

Прямой ток в десятки миллиампер получается при прямом напряжении порядка десятых долей вольта. Поэтому прямое сопротивление имеет величину не выше десятков Ом. Для более мощных диодов прямой ток составляет сотни миллиампер и больше при таком же малом напряжении, а сопротивление соответственно снижается до единиц Ом и меньше. Обратный ток при обратном напряжении до сотен вольт у диодов небольшой мощности составляет лишь единицы и десятки микроампер. Это соответствует обратному сопротивлению до сотен кОм и больше.

При практическом использовании диодов выделять составляющие, которые искажают идеализированную ВАХ, сложно и нецелесообразно.

Поэтому у реальных диодов в качестве одного из основных параметров используют обратный ток , который измеряют при определенном значении обратного напряжения.

У германиевых диодов , у кремниевых. Так как значения обратного тока у диодов изменяются в широких пределах (от экземпляра к экземпляру), в паспортных данных на каждый вид диода указывается его максимально допустимое значение.

Тепловой ток и остальные составляющие обратного тока сильно зависят от температуры. Для теплового тока справедлива зависимость

(*)

где тепловой ток при температурепостоянный коэффициент (для германияпри, для кремнияпри). С помощью выражения (*) можно ориентировочно определить обратный ток при разных температурах у германиевых диодов. В кремниевых диодах в диапазоне рабочих температур доля теплового тока в полном обратном токе невелика. Для инженерных расчетов обратного тока в зависимости от температуры окружающей среды пользуются упрощенным выражением

,

где T* - приращение температуры, при котором обратный токудваивается (T*810oCдля германия иT*67oCдля кремния). В практике часто считают, что обратный ток германиевых диодов увеличивается в два раза, а кремниевых – в 2,5 раза при увеличении температуры на каждые 10оС. При этом фактическое изменение обратного тока обычно занижается. Так как обратный ток в кремниевых диодах на несколько порядков меньше, чем в германиевых, им часто пренебрегают.

С учетом падения напряжения на базе диода запишем уравнение прямой ветви ВАХ диода:

где rб– омическое сопротивление базы диода. ВАХ кремниевого и германиевого диодов:

В области обратных напряжений можно пренебречь падением напряжения в объеме полупроводника. При достижении обратным напряжением определенного критического значения ток диода начинает резко возрастать. Это явление называют пробоем диода.

Падение напряжения на диоде зависит от токаI, протекающего через него, и имеет большее значение у диодов с малым. Так как у кремниевых диодов тепловой токмал, то и начальный участок прямой ветви ВАХ значительно более пологий, чем у германиевых. При увеличении температуры прямая ветвь ВАХ становится более крутой из-за увеличенияи уменьшения сопротивления базы. Падение напряжения, соответствующее тому же значению прямого тока, при этом уменьшается, что оценивается с помощью температурного коэффициента напряжения:

.

показывает, насколько должно измениться напряжение на р-n– переходе при изменении температуры на 1оС приI=const,=2,2 мВ/град.

Классификация

В зависимости от технологических процессов, использованных при их изготовлении:

- точечные диоды,

- сплавные,

- микросплавные,

- с диффузной базой,

- с эпитаксиальныеи др.

По функциональному назначениюдиоды делят на:

- выпрямительные

- универсальные

- импульсные

- смесительные

- детекторные

-модуляторные

- переключающие

- умножительные

- стабилитроны (опорные)

- туннельные

- параметрические

- фотодиоды

- светодиоды

- магнитодиоды

- высокочастотные

- диоды Ганна и т.д.

Существует много разновидностей полупроводниковых диодов, обладающих специальными свойствами. Стабилитрон- диод, у которого сопротивление в обратном направлении уменьшается с увеличением силы тока, так что напряжение на диоде практически не меняется.Варикап- диод, емкостьp-nперехода которого зависит от значения приложенного к нему напряжения. Он может быть использован в качестве конденсатора, емкостью которого управляют, изменяя приложенное напряжение.

Есть еще и необычные полупроводниковые диоды – это светодиоды и фотодиоды. Фотодиоды пропускают ток только при попадании на их корпус света. А светодиоды при прохождении через них тока, начинают светиться. Цвет свечения светодиодов зависит от того, к какой разновидности он принадлежит. Фотодиод- полупроводниковый диод, в корпусе которого имеется окно для освещенияp-nперехода. Под действием света изменяется сопротивление диода и, следовательно, сила тока в его цепи. Кроме того, под действием света в диоде возникает электродвижущая сила, так, что освещенный фотодиод является источником электрической энергии.

Обозначения полупроводниковых диодов состоят из шести элементов. Первый элемент – буква, указывающая, на основе какого полупроводникового материала выполнен диод. Германий или его соединения обозначают буквой Г, кремний и его соединения – буквой К, соединения галлия – А. В приборах специального назначения буквы заменяются соответствующими цифрами: германий – 1, кремний – 2, соединения галлия – 3. Второй элемент – буква, обозначающая подклассы диода: выпрямительные, импульсные, универсальные – Д, варикапы – В, туннельные и обращенные диоды – И, стабилитроны – С, сверхвысокочастотные – А. Третий элемент – цифра, определяющая назначение диода: от 101 до 399 – выпрямительные; от 401 до 499 – универсальные; от 501 до 599 - импульсные. У стабилитронов эта цифра определяет мощность рассеяния. Четвертый и пятый элементы – цифры, определяющие порядковый номер разработки (у стабилитронов эти цифры показывают номинальное напряжение стабилизации). Шестой элемент – буква, показывающая деление технологического типа на параметрические группы (приборы одного типа по значениям параметров подразделяются на группы). У стабилитронов буквы от А до Я определяют последовательность разработки, например: КД215А, ГД412А, 2Д504А, КВ101А, КС168А и т. д.

Полупроводниковые диоды подразделяются на группы в зависимости от их мощности, диапазона рабочих частот и напряжения.

По типу мощности различают выпрямительные диоды малой, средней и большой мощности.

Выпрямительные диоды малой мощности. К ним относятся диоды, поставляемые промышленностью на прямой ток до 300мА. Справочным параметром выпрямительных диодов малой мощности является допустимый выпрямительный ток (допустимой среднее значение прямого тока), который определяет в заданном диапазоне температур допустимое среднее за период значение длительно протекающих через диод импульсов прямого тока синусоидальной формы при паузах в 180 (полупериод) и частоте 50 Гц. Максимальное обратное напряжения этих диодов лежит в диапазоне от десятков до 1200В.

Выпрямительные диоды средней мощности. К этому типу относятся диоды, допустимое среднее значение прямого тока которых лежит в пределах 300мА-10мА. Большой прямой ток этих по сравнению с маломощными диодами достигается увеличением размеров кристалла, в частности рабочей площади p-n перехода. Диоды средней мощности выпускаются преимущественно кремниевыми. В связи с этим обратный ток этих диодов при сравнительно большой плоскости p-n перехода достаточно мал(несколько десятков микроампер). Теплота, выделяемая в кристалле от протекания прямого и обратного токов в диодах средней мощности, уже не может быть рассеяна корпусом прибора.

Мощные (силовые) диоды. К данному типу относятся диоды на токи от 10А и выше. Промышленность выпускает силовые диоды на токи 10,16,25,40 и т.д. и обратные напряжения до3500 В. Силовые диоды имеют градацию по частоте охватывают частотный диапазон до десятков килогерц. Мощные диоды изготовляют преимущественно из кремния. Кремниевая пластинка с p-n переходом, создаваемым диффузным методом, для таких диодов представляет собой диск диаметром 10-100мм и толщиной 0,3-0,6 мм.