Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Коллоквиум(генетика).docx
Скачиваний:
56
Добавлен:
24.11.2019
Размер:
202.47 Кб
Скачать

4. Комплексное изучение структуры и функции генома привело к формированию самостоятельной научной дисциплины, названной «геномикой».

Предмет этой науки -строение геномов человека и других живых существ (растений, животных, микроорганизмов и др.), задача - применить полученные знания для улучшения качества жизни человека. В рамках этой новой научной дисциплины проводятся исследования по функциональной геномике, сравнительной геномике, а также по генетическому разнообразию человека.

Бурное развитие молекулярной биологии и генетики во второй половине XX века, появление технологий рекомбинантных ДНК дали в руки исследователей мощный инструмент для изучения молекулярных механизмов болезней, для разработки новых молекулярных методов диагностики, терапии и профилактики различных заболеваний. Итогом и продолжением развития этих исследований явился проект «Геном человека». Как следует из названия этого проекта его цель заключалась в секве-нировании всего человеческого генома. Расшифровка генома, состоящего из 3 х 109 п.н. и содержащего 20-28 тыс. генов, завершена в 2003 г., о чем было объявлено 17.04.2003 г. Международным консорциумом по секвенированию генома человека. Знание полной нуклеотидной последовательности генома человека позволит создавать более точные генетические карты и, кроме того, ускорит идентификацию генов, которые были локализованы путем анализа сцепления с конкретным маркером.

К 2001 г. было идентифицировано 1,42 миллиона случаев полиморфизма по отдельным нуклеотидам (single nucleotide polymorphisms, SNPs). SNP-маркеры встречаются с частотой 1 на 500 оснований; опубликована их карта. При изучении генетической восприимчивости к заболеваниям наиболее перспективно использовать внутригенные SNP, число которых в настоящее время составляет 60 000. Важно, что маркеры встречаются именно в гаплотипах, различающихся между индивидами, и, возможно, разработка карт гаплотипов окажется более перспективным подходом к идентификации генов. Значительная вариабельность по разным видам ДН К-маркеров, отражающая степень изменчивости геномов, предоставляет большие возможности для изучения эволюционной истории разных видов организмов.

Важнейший элемент геномных исследований — характеристика различных генов, составляющих эти геномы, изучение механизмов их регуляции, взаимодействия друг с другом и с факторами среды в норме и при патологии. Охарактеризовать таким образом как можно большее количество генов - основная задача функциональной геномики. Чтобы ответить на вопрос, как функционируют и как регулируются примерно 25 000 генов, составляющих геном человека, необходимы длительные мультидисциплинарные исследовавния.

Как говорилось выше, анализ любого генома включает определение нуклеотидной последовательности, белковых продуктов генов, изучение взаимодействия разных генов и белков и механизма регуляции всей системы. После расшифровки генома усилия исследователей фокусируются на изучении белковых продуктов генов.

Этим занимается протеомнка. Ее задача — определить все белки, синтезируемые в клетке, выяснить их строение, количество, локализацию, модификацию и механизмы взаимодействия.

Еще одно важное направление функциональной геномики — траискриптомика — изучает координированную работу генов, образование первичных транскриптов, процессы сплайсинга и формирования зрелых мРНК. Благодаря технологии микрочипов удается одновременно анализировать картину транскрипции мРНК со ста тысяч генов. Исследование «транскриптома» этим методом позволяет установить различия между экспрессией генов в разных тканях, проанализировать характер экспрессии в разные периоды болезни, а также классифицировать белки - на секретируемые и связанные с мембранами (определяя положение их мРНК).

В рамках еще одного направления функциональной геномики - ни гомики исследуют генетические механизмы и генетический контроль клеточной дифференцировки и гистогенеза, а также образования субклеточных структур.

Технологии, позволяющие анализировать молекулярные механизмы путем сравнения генов или их продуктов в разных органах и тканях, а также геномов различных организмов, развиваются в рамках сравнительной геномики. Так, сравнения белковых последовательностей внутри и между видами организмов помогают получить информацию об их потенциальных функциях. Однако при неудаче простого сравнительного анализа, основанного на гомологии с другими белками и/или на их трехмерном строении, определяют разные компоненты белковых комплексов и/или клеточных структур перед тем, как их истинная функция станет очевидной. Изучение координации внутри клетки и организма действия пакетов генов путем сравнения геномов разных видов основано на том, что жизненно важные регуляторные функции сохранились у многих видов организмов на протяжении эволюции. Например, информация о регуляции клеточного цикла, необходимая для понимания процесса канцерогенеза у человека, была получена путем сравнения с аналогичными процессами у дрожжей.

Избирательная инактивация у мышей позволила определить функции многих эффекторов иммунной системы и регуляторов ранних стадий кроветворения.

Параллельно с программой «Геном человека» шла работа по секвенированию геномов организмов, имеющих значение для здоровья и жизнеобеспечения человека. Такая Инф ормация необходима, чтобы наиболее эффективно использовать знания, полученные при разработке проекта «Геном человека» ,

Примеры применения геномики в медицине

В больнице Висконсина ребёнок в возрасте трёх лет долгое время ставил врачей в тупик, его кишечник отёк и был полностью пронизан абсцессами. К своим трем годам этот ребёнок пережил более ста отдельных хирургических операций. Для него был заказан полный сиквенс кодирующих участков его ДНК, по результатам с помощью подручных средств был выявлен виновник заболевания – белок XIAP, участвующий в сигнальных цепях запрограммированной клеточной смерти. При нормальной работе он играет очень важную роль в иммунной системы. На основе такого диагноза физиологами была рекомендована трансплантация костного мозга в июне 2010. К середине июня ребёнок уже смог впервые в своей жизни поесть.

Другой случай связан был с нетипичным раковым заболеванием у 39ти летней женщины, страдающей острой формой промиелоцитарной лейкемии. При стандартных методах диагностики, однако, заболевание не было выявлено. А вот при расшифровке и анализе генома раковых клеток выяснилось, что крупный участок 15ой хромосомы переместился на 17ю, что вызвало определённое генное взаимодействие. В результате женщина получила необходимое ей лечение.

Протеомика — наука, основным предметом изучения которой являются белки и их взаимодействия в живых организмах, в том числе — в человеческом. Учёные, работающие в области протеомики, исследуют «производство» белков, их декомпозицию и замену белков внутри тела. Они также изучают как белки модифицируются после их синтеза в организме.Предметом изучения протеомики являются синтез, модификация, декомпозиция и замена белков исследуемого объекта. После расшифровки генома человека и геномов многих других организмов, появились исчерпывающие базы данных о структуре всех белков человека и многих других организмов, а также их протеолитических фрагментов, полученных в стандартных условиях, что позволяет идентифицировать белки по молекулярной массе их протеолитических фрагментов. Развитие протеомики обусловлено использованием высокотехнологичных методов, позволяющих определить количество того или иного белка в образце, идентифицировать белок, его первичную структуру и пост-трансляционные модификации. В настоящее время большая часть работ в протеомике выполняется с использованием метода 2-D PAGE (двумерного гель-электрофореза в полиакриламиде). Однако в последнее десятилетие получают все более широкое применение высокотехнологичные методы, обладающие большей эффективностью, информативностью и чувствительностью, такие как микросеквенирование белков, жидкостная хроматография высокого давления (HPLC), масс-спектрометрия, а также использование белковых чипов с различными типами детекции, таких как SELDI Protein Chip. Протеиновые чипы основаны на связывании определенных белков со специфически взаимодействующими или связывающимися с ними молекулами. Взаимодействие может строиться по типу антиген-антителорецептор-лигандДНК-белок, белок-белок, фермент-субстрат или белок-липид. Чипы считываются путем Surface-Enhanced Laser Desorption/Ionization (лазерная десорбция/ионизация - SELDI) с помощью специального устройства и идентифицируются с помощью времяпролетной масс-спектрометрии. В настоящее время в медицине применение методов протеомного анализа позволяет выявить маркеры кардиоваскулярных и онкологических заболеваний на ранней стадии заболевания (клиническая протеомика). Клиническая протеомика – это идентификация и количественное определение всех индивидуальных белков, которые содержатся в биологическом образце (сыворотка крови, спинномозговая жидкость, моча, ткань) и мониторинг изменения их концентраций. Методы протеомного анализа позволяют проанализировать до 10 000 индивидуальных белков в одном образце и зафиксировать изменения их концентраций, что позволяет проводить диагностику и мониторинг течения заболевания.