
- •8 Предисловие
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 2
- •Глава 2
- •Глава 2
- •28 Глава 2
- •30 Глава 2
- •Глава 2
- •34 Глава 2
- •36 Глава 2
- •Глава 2
- •Глава 3
- •46 Глава 3
- •Глава 3
- •52 Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •66 Глава4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •76 Глава 4
- •78 Глава 4
- •Глава 4
- •84 Глава 4
- •86 Глава 4
- •Глава 4
- •Глава 4
- •92 Глава 4
- •94 Глава 4
- •96 Глава 4
- •Глава 4
- •102 Глава 5
- •106 Глава 5
- •110 Глава 5
- •112 Глава 5
- •Глава 5
- •116 Глава 5
- •118 Глава 5
- •126 Глава 5
- •128 Глава 5
- •1 32 Глава 5
- •134 Глава 6
- •138 Глава 6
- •140 Глава 6
- •142 Глава 6
- •Глава 7
- •150 Глава 7
- •152 Глава 7
- •158 Глава 7
- •160 Глава 7
- •162 Глава 7
- •168 Глава 8
- •Iibetoboe зрение 1 71
- •174 Глава 8
- •178 Глава 8
- •180 Глава 8
- •182 Глава 8
- •184 Глава 8
- •1 88 Глава 8
- •190 Глава 8
- •192 Глава 8
- •194 Глава 8
- •196 Глава 8
- •9. Депривация и развитие
- •200 Глава 9
- •Глава 9
- •204 Глава 9
- •210 Глава 9
- •212 Глава 9
- •214 Глава 9
- •216 Глава 9
- •218 Глава 9
- •220 Глава 9
- •222 Глава 9
- •224 Глава 9
- •228 Глава 10
- •230 Глава 10
- •232 Литература для дополнительного чтения
- •234 Источники заимствованных иллюстраций
Глава 2
электроотрицательным снаружи по отношению к внутреннему пространству. Затем натриевые поры вновь закрываются, в то время как калиевые остаются открытыми, причем даже в большем количестве, чем в состоянии покоя. Оба процесса — закрытие натриевых пор и дополнительное открытие калиевых пор — приводят к быстрому восстановлению потенциала покоя с положительным полюсом снаружи. Вся последовательность событий занимает примерно тысячную долю секунды.
Все происходящее зависит от обстоятельств, влияющих на открытие и закрытие пор. Как натриевые, так и калиевые каналы чувствительны к мембранному потенциалу. Уменьшение наружного положительного заряда — деполяризация мембраны относительно состояния покоя — приводит к открытию пор. Это влияние неодинаково для пор двух типов: натриевые поры, открывшись, снова закрываются сами по себе, даже если мембрана остается деполяризованной, и неспособны вновь открыться на протяжении нескольких тысячных долей секунды; калиевые поры остаются открытыми, пока поддерживается деполяризация. При определенном уровне деполяризации число ионов натрия, входящих внутрь, вначале превышает число выходящих ионов калия и наружная поверхность мембраны становится электроотрицательной по отношению к внутренней; позднее начинает преобладать поток калия и восстанавливается потенциал покоя.
В этой последовательности событий, составляющих импульс (открываются поры, ионы проходят через мембрану и мембранный потенциал дважды претерпевает изменения), число ионов, фактически проходящих через мембрану — Na+ внутрь, а К+ наружу, — ничтожно, и его недостаточно для измеримого изменения ионных концентраций внутри или снаружи клетки. За несколько минут, однако, нейрон способен разрядиться тысячу раз, и в результате концентрации ионов могли бы заметно измениться, если бы не насос, который все время выводит натрий и накачивает внутрь калий, поддерживая таким образом их концентрации на надлежащих уровнях покоя. Почему во время импульса столь малый перенос заряда ведет к таким большим колебаниям потенциала? Это следствие одного из простых законов электричества: емкость мембраны мала, а потенциал равен перенесенному заряду, деленному на емкость.
Деполяризация мембраны — уменьшение электроотрицательности внутри относительно состояния покоя — вот что обеспечивает первоначальный запуск импульса. Если быстро ввести в покоящееся волокно некоторое количество ионов натрия, вызвав небольшую начальную деполяризацию, то в результате откроется небольшое число натриевых пор; но, поскольку много калиевых пор уже открыто, изнутри может выйти достаточно калия, чтобы скомпенсировать этот эффект и быстро вернуть мембрану в исходное состояние покоя. Предположим, однако, что начальный перенос заряда столь велик и открылось так много натриевых пор, что натрий приносит внутрь больше заряда, чем может быть выведено с калием; тогда мембрана деполяризуется еще сильнее. Это приведет к открытию еще большего числа натриевых пор, к еще большей деполяризации и так далее — возникнет самоусиливающийся взрывоподобный процесс. Когда откроются все натриевые поры, которые могут открыться, мембранный потенциал изменит свой знак на обратный по отношению к потенциалу покоя: вместо 70 милливольт с положительным полюсом снаружи он составит 40 милливольт с отрицательным полюсом снаружи.
Уменьшение потенциала на мембране с последующим изменением его знака (реверсией) не происходит сразу по всей длине волокна, так как перенос заряда требует времени. Активный участок возникает в одном месте и перемещается по волокну со скоростью от 0,1 до примерно 10 метров в секунду. В любой
ИМПУЛЬСЫ, СИНАПСЫ И НЕЙРОННЫЕ СЕТИ 27
момент времени существует один активный участок с реверсированным потенциалом, и эта область реверсии передвигается, удаляясь от тела нейрона; впереди нее находится участок с еще не открытыми каналами, а позади — участок, где каналы снова закрылись и временно неспособны к повторному открытию.
Это и есть процесс распространения импульса. Вы видите, что он вовсе не похож на прохождение тока по медной проволоке. По всей длине нерва не перемещаются электрические заряды, ионы или вообще нечто материальное, точно так же как при смыкании лезвий ножниц ничто не перемещается от соединительного винта до их кончиков. (Ионы образуют лишь местные токи, переходя внутрь и наружу, подобно тому как лезвия ножниц движутся вверх и вниз.) Перемещается некоторое событие или процесс — перекрещивание лезвий ножниц или импульс в нерве.
Поскольку подготовка натриевых каналов к следующему открытию и закрытию требует некоторого времени, наибольшая частота, с которой клетка или аксон способны генерировать импульсы, составляет около 800 в секунду. Однако столь высокая частота необычна; даже для сильно активированных
Рис. 11. Мембрана глиальной клетки многократно обернута вокруг аксона, как это видно на электронной микрофотографии поперечного среза нервного волокна. Такая мембрана состоит из миелина, который ускоряет проведение нервных импульсов, повышая сопротивление и уменьшая емкость между внутренностью аксона и окружающим пространством. В аксоне видны (в поперечном сечении) органеллы, называемые микротрубочками.