- •8 Предисловие
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 2
- •Глава 2
- •Глава 2
- •28 Глава 2
- •30 Глава 2
- •Глава 2
- •34 Глава 2
- •36 Глава 2
- •Глава 2
- •Глава 3
- •46 Глава 3
- •Глава 3
- •52 Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •66 Глава4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •76 Глава 4
- •78 Глава 4
- •Глава 4
- •84 Глава 4
- •86 Глава 4
- •Глава 4
- •Глава 4
- •92 Глава 4
- •94 Глава 4
- •96 Глава 4
- •Глава 4
- •102 Глава 5
- •106 Глава 5
- •110 Глава 5
- •112 Глава 5
- •Глава 5
- •116 Глава 5
- •118 Глава 5
- •126 Глава 5
- •128 Глава 5
- •1 32 Глава 5
- •134 Глава 6
- •138 Глава 6
- •140 Глава 6
- •142 Глава 6
- •Глава 7
- •150 Глава 7
- •152 Глава 7
- •158 Глава 7
- •160 Глава 7
- •162 Глава 7
- •168 Глава 8
- •Iibetoboe зрение 1 71
- •174 Глава 8
- •178 Глава 8
- •180 Глава 8
- •182 Глава 8
- •184 Глава 8
- •1 88 Глава 8
- •190 Глава 8
- •192 Глава 8
- •194 Глава 8
- •196 Глава 8
- •9. Депривация и развитие
- •200 Глава 9
- •Глава 9
- •204 Глава 9
- •210 Глава 9
- •212 Глава 9
- •214 Глава 9
- •216 Глава 9
- •218 Глава 9
- •220 Глава 9
- •222 Глава 9
- •224 Глава 9
- •228 Глава 10
- •230 Глава 10
- •232 Литература для дополнительного чтения
- •234 Источники заимствованных иллюстраций
174 Глава 8
длиной волны. Необходимо иметь возможность отличать изменения яркости от изменений длины волны.
Но предположим, что у вас есть два вида колбочек с перекрывающимися кривыми спектральной чувствительности, например красные и зеленые колбочки. Теперь вы можете определять длину волны простым сравнением выходов колбочек. При коротких волнах сильнее будут реагировать зеленые колбочки; по мере увеличения длины волны реакции тех и других колбочек будут все больше приближаться друг к другу, пока не сравняются; примерно при 580 нм красные начнут отвечать лучше зеленых, и эта разница будет постепенно увеличиваться по мере дальнейшего роста длины волны. Если мы вычтем из кривой чувствительности для одних колбочек кривую для других (это логарифмические кривые, поэтому мы фактически берем отношения величин), то мы получим некоторую кривую, не зависящую от интенсивности света. Таким образом, колбочки двух типов вместе образуют прибор для измерения длины волны.
Почему же тогда двух типов рецепторов мало, чтобы полностью объяснить свойства нашего цветового зрения? Двух и в самом деле было бы достаточно, если бы мы имели дело только с монохроматическим светом — если бы мы согласились отказаться от таких вещей, как способность отличать цветной свет от белого. Наше зрение таково, что никакой монохроматический свет с любой длиной волны не выглядит белым. Это было бы невозможно при колбочках только двух типов. В случае красных и зеленых колбочек, продвигаясь от коротких к длинным волнам, мы постепенно переходим от стимуляции только зеленых к стимуляции только красных рецепторов со всеми промежуточными соотношениями между реакциями тех и других. Белый свет, состоящий, по существу, из смеси всех волн, должен в определенной мере стимулировать и красные, и зеленые колбочки. Таким образом, если монохроматический свет будет иметь длину волны, дающую то же соотношение реакций, то он будет неотличим от белого. Именно так обстоит дело при наиболее распространенной форме цветовой слепоты, когда человек имеет только два вида колбочек: независимо от того, какой из трех пигментов отсутствует, всегда найдется свет с какой-то длиной волны, неотличимый от белого. (Эти люди обладают дефектами цветового восприятия, но, конечно, не являются полностью цветнослепы-ми.)
Чтобы иметь цветовое зрение, подобное нашему, необходимо и достаточно иметь колбочки трех типов. Вывод о том, что у нас действительно именно три типа колбочек, был впервые сделан при исследовании особенностей цветового зрения человека, в результате ряда дедуктивных умозаключений, делающих честь человеческому интеллекту.
Теперь мы можем лучше понять, почему палочки не участвуют в восприятии цвета. При промежуточных уровнях освещенности могут функционировать как палочки, так и колбочки, но нервная система (если не считать редких искусственных ситуаций), по-видимому, не занимается вычитанием палочковых влияний из кол бочковых. Колбочки сравнивают друг с другом, а палочки работают сами по себе. Если вы хотите убедиться в том, что палочки не передают информацию о цвете, проснитесь лунной ночью и оглядитесь. Хотя форму предметов вы сможете видеть довольно хорошо, цвета будут полностью отсутствовать. Удивительно, как мало людей осознают, что при слабом свете они обходятся без цветового зрения.
Увидим ли мы данный объект белым или цветным, определяется главным образом (но не всецело) тем, какие из трех типов колбочек активируются. Цвет — это результат неодинаковой стимуляции колбочек разного типа. Понятно, что свет с широкой спектральной кривой, например от солнца или от
ЦВЕТОВОЕ ЗРЕНИЕ
175
Рис. 120. Верхний график — «чувствительность колбочек» — повторяет график, приведенный на рис. 119. Далее указано, какие колбочки будут активироваться различными смесями окрашенного света и какие будут возникать ощущения.
свечи, будет стимулировать колбочки всех трех типов (возможно, почти одинаково), и тогда ощущение окажется лишенным цвета, или «белым». Если бы нам удалось стимулировать колбочки только одного вида (что с помощью света сделать нелегко из-за перекрывания кривых поглощения), то результатом, как уже говорилось, был бы яркий цвет — фиолетовый, зеленый или красный в зависимости от вида стимулируемых колбочек. То, что максимум чувствительности тех колбочек, которые мы называем «красными», соответствует длине волны света, видимого нами как зеленовато-желтый (560 нм), связано, по-видимому, с тем, что такой свет возбуждает как зеленые, так и красные колбочки — из-за перекрывания кривых их спектральной чувствительности. Используя свет с большей длиной волны, мы можем более эффективно стимулировать красные колбочки по сравнению с зелеными.
Графики на рис. 120 резюмируют цветовые ощущения, возникающие при активации разных сочетаний колбочек светом различного спектрального состава. Первый и два последних примера должны убедительно показать, что
176 ГЛАВА 8
ощущение «белого» цвета — результат примерно одинаковой стимуляции колбочек всех трех типов — может быть вызвано многими различными способами: и воздействием широкополосного света, и с помощью смеси узких спектральных полос, например желтого света с синим или красного с сине-зеленым. Два световых луча называют дополнительными, если их волновой состав и интенсивность подобраны так, что при смешении они дают ощущение «белого». В двух последних примерах синий и желтый, так же как красный с длиной волны 640 нм и сине-зеленый цвета являются дополнительными.
Теории цветового зрения
Все сказанное выше о зависимости видимого цвета от стимуляции тех или иных колбочек основано на исследованиях, начатых Ньютоном в 1704 году и продолжающихся до сих пор. Изобретательность, которую проявил Ньютон в своих экспериментах, трудно переоценить: в работе, посвященной цвету, он при помощи призмы расщеплял белый свет; воссоединял его компоненты второй призмой, вновь получая белый свет; изготовил волчок с цветовыми секторами, при вращении которого опять-таки получался белый цвет. Эти открытия привели к осознанию того, что обычный свет состоит из непрерывного ряда лучей с различными длинами волн.
В XVIII столетии постепенно выяснилось, что всякий цвет можно получить путем смешения трех цветных компонентов в надлежащих пропорциях при условии, что длины их волн достаточно отличаются друг от друга. Представление о том, что любой цвет может быть «составлен» путем манипулирования тремя управляющими факторами (в данном случае путем изменения интенсивности трех различных лучей) получило название трихроматичности. В 1802 году Томас Юнг выдвинул четкую и простую теорию, объясняющую трихрома-тичносты он предположил, что в каждой точке сетчатки должны существовать по меньшей мере три «частицы» — крошечные структуры, чувствительные соответственно к красному, зеленому и фиолетовому. Длительный временной интервал между Ньютоном и Юнгом трудно объясним, но различные «дорожные препятствия» вроде, например, того факта, что желтая и синяя краски, смешиваясь, дают зеленую, не способствовали, конечно, ясности мышления. Решающие эксперименты, прямо и недвусмысленно подтвердившие, наконец, идею Юнга о том, что цвет должен определяться мозаикой трех видов детекторов в сетчатке, были проведены в 1959 году: Джордж Уолд и Пол Браун в Гарварде и Эдвард Мак-Никол и Уильям Маркс в Университете Джонса Гопкинса изучали под микроскопом способность отдельных колбочек поглощать свет с различной длиной волны и обнаружили три и только три типа колбочек. До этого ученые прилагали все усилия, используя менее прямые методы, и за несколько столетий фактически пришли к такому же результату, доказав теорию Юнга о необходимости именно трех типов колбочек и оценив их спектральную чувствительность. Применялись в основном психофизические методы: ученые выясняли, какие цветовые ощущения вызывают различные смеси монохроматических лучей, как влияет на цветовое зрение избирательное обесцвечивание рецепторов под действием монохроматического света, а также исследовали цветовую слепоту.
Изучение эффектов смешения цветов необычайно интересно — настолько его результаты удивительны и противоречат интуиции. Никто без предварительного знания не угадал бы разнообразные явления, иллюстрируемые на рис. 120 и 121, — например, не мог бы предсказать, что два пятна, ярко-синее и ярко-желтое, при наложении друг на друга сольются в белый цвет, неотличи-
ЦВЕТОВОЕ ЗРЕНИЕ 177
Рис. 121. С помощью трех диапроекторов и трех фильтров на экран проецируются три перекрывающихся пятна (красное, зеленое и синее). Красное и зеленое при наложении дают желтый цвет, синее и зеленое — бирюзовый, красное и синее — пурпурный, а все три вместе — белый цвет.
мый на глаз от цвета мела, или что зеленый и красный спектральные цвета при их объединении дадут желтый, почти неотличимый от монохроматического желтого цвета.
Прежде чем обсуждать другие теории цвета, нужно сообщить ряд дополнительных сведений о разнообразии цветов, которое эти теории призваны объяснить. Какие существуют цвета помимо цветов радуги? По моему мнению, имеются три вида таких цветов. Один вид — пурпурные, которые отсутствуют в радуге, но появляются при одновременной стимуляции красных и синих колбочек, т. е. при смешении длинно- и коротковолнового, или, грубо говоря, красного и синего света. Если к смеси спектрального красного и спектрального синего света — к пурпурному — мы добавим надлежащее количество зеленого, то мы получим белый цвет; поэтому мы говорим, что зеленый и пурпурный являются дополнительными. Можно, если угодно, представить себе круговую шкалу, включающую все цвета спектра от красного через желтый и зеленый до синего и фиолетового с последующим переходом к пурпурным цветам — сначала к синевато-пурпурному, затем к красновато-пурпурному и наконец опять к красному. Можно расположить эти оттенки так, чтобы дополнительные цвета располагались друг против друга. Понятие основных цветов не вписывается в эту схему: если определить основные цвета в соответствии с тремя типами рецепторов, то мы выделим зеленовато-желтый, зеленый и фиолето-
