Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Хьюбел Д. - Глаз, мозг, зрение.doc
Скачиваний:
15
Добавлен:
24.11.2019
Размер:
4.2 Mб
Скачать

Iibetoboe зрение 1 71

Зрительные рецепторы

Каждая палочка или колбочка в нашей сетчатке содержит пигмент, поглощающий в каком-то участке спектра лучше, чем в других участках. Поэтому, если бы мы смогли собрать достаточное количество такого пигмента и посмотреть на него, он выглядел бы окрашенным. Зрительный пигмент обладает особым свойством: при поглощении им светового фотона он изменяет свою молекулярную форму и при этом высвобождает энергию, запуская таким образом цепь химических реакций, описанную в главе 3, которые в конце концов приводят к появлению электрического сигнала и к выделению химического медиатора в синапсе. Пигментная молекула в своей новой форме, как правило, обладает совсем иными светопоглощающими свойствами, и если, как это обычно бывает, она поглощает свет хуже, чем в исходной форме, мы говорим, что она «выцветает» под действием света. Затем сложный химический механизм глаза восстанавливает первоначальную конфигурацию пигмента; в противном случае его запас быстро истощился бы.

Сетчатка содержит своего рода мозаику из рецепторов четырех типов — палочек и трех типов колбочек (рис. 118). Каждый тип рецепторов содержит свой особый пигмент. Разные пигменты отличаются друг от друга в химическом отношении, а в связи с этим и по способности поглощать свет с различной длиной волн. Палочки ответственны за нашу способность видеть при слабом свете, т. е. за сравнительно грубую разновидность зрения, не позволяющую различать цвета. Палочковый пигмент родопсин обладает наибольшей чувствительностью в области около 510 нм, в зеленой части спектра. Палочки отличаются от колбочек во многих отношениях: они меньше и имеют несколько иное строение, по-иному распределены в разных частях сетчатки и имеют свои особенности в системе связей, образуемых с последующими уровнями зрительного пути. И наконец, по содержащимся в них светочувствительным пигментам три типа колбочек отличаются как друг от друга, так и от палочек.

Пигменты колбочек трех типов имеют пики поглощения в области 430, 530 и 560 нм (рис. 119); поэтому разные колбочки несколько неточно называют соответственно «синими», «зелеными» и «красными». Неточность состоит в том, что 1) эти названия отражают максимумы чувствительности (которые в

Рис. 118. Рецепторы сетчатки образуют мозаику, состоящую из палочек и трех типов колбочек. Данная схема могла бы отображать участок сетчатки в нескольких градусах от центральной ямки, где колбочек больше, чем палочек.

Рис. 119. Спектры поглощения (или кривые спектральной чувствительности) у колбочек трех типов различны. (Ординаты на энергетических кривых и кривых поглощения откладываются в логарифмических единицах, поскольку их значения изменяются в очень широком диапазоне. Поэтому положение оси х произвольно и не соответствует нулевому поглощению).

свою очередь зависят от светопоглощающей способности), а не то, как эти пигменты выглядели бы, если бы на них можно было посмотреть; 2) монохроматический свет с длинами волн 430, 530 и 560 нм будет не синим, зеленым и красным, а фиолетовым, сине-зеленым и желто-зеленым; 3) если бы можно было стимулировать колбочки только одного типа, мы видели бы не синий, зеленый и красный цвета, а, вероятно, фиолетовый, зеленый и желтовато-зеленый. Однако приведенные выше названия колбочек широко распространены, а попытки изменить укоренившуюся терминологию обычно оканчиваются неудачей. Более корректными были бы названия «длинноволновые», «средневолновые» и «коротковолновые», но они затрудняли бы понимание для тех, кто не слишком хорошо знаком со спектром.

Имея максимум поглощения в зеленой области, палочковый пигмент родопсин отражает синие и красные лучи и поэтому выглядит пурпурным. Поскольку в наших сетчатках он присутствует в количествах, достаточных для того, чтобы химики смогли его выделить и можно было на него посмотреть, он издавна получил название зрительного пурпура. Само по себе это нелогично, поскольку «зрительный пурпур» называют так по его видимому цвету, тогда как названия для колбочек («красные», «синие» и «зеленые») соответствуют их относительной чувствительности, т. е. способности поглощать свет. Во избежание путаницы об этом следует помнить.

Три типа колбочек имеют широкие зоны чувствительности со значительным перекрыванием, особенно для красных и зеленых колбочек. Свет с длиной волны 600 нм вызовет наибольшую реакцию красных колбочек, пик чувствительности которых расположен при 560 нм; вероятно, он вызовет также некоторую, хотя и более слабую, реакцию колбочек двух других типов. Таким образом, «красная» колбочка реагирует не только на длинноволновый, т. е. красный, свет; она лишь реагирует на него лучше других колбочек. Сказанное относится и к колбочкам других типов.

До сих пор я рассматривал физические аспекты цветового зрения: природу света и пигментов, свойства объектов, отражающих свет к нашим глазам, и особенности палочковых и кол бочковых пигментов, преобразующих поглощенный свет в электрические сигналы. Интерпретировать эти исходные сигналы как различные цвета — это уже задача мозга. Чтобы лучше дать почувствовать предмет обсуждения, я решил вначале кратко изложить элементар-

ЦВЕТОВОЕ ЗРЕНИЕ 1 73

ные факты о цветовом зрении, оставив пока в стороне трехсотлетнюю историю установления этих фактов, а также процессы обработки цветовой информации мозгом.

Общие замечания о цвете

Быть может, полезно начать с того, как оперируют с различными длинами волн две сенсорные системы — слуховая и зрительная. Деятельность одной из них приводит к восприятию высоты тона, а другой — к восприятию цвета, но между этими системами есть глубокое различие. Когда я беру на фортепиано аккорд из пяти нот, вы можете выделить отдельные ноты и пропеть каждую из них по отдельности. Ноты не смешиваются в нашем мозгу, но сохраняют свою индивидуальность, в то время как еще со времен Ньютона известно, что при смешивании двух или нескольких световых лучей разного цвета вы не можете выделить компоненты путем простого рассматривания.

Небольшое размышление убедит вас в том, что цветовое зрение неизбежно должно быть чувством менее совершенным, чем восприятие тонов. Звук, приходящий в любой данный момент в одно ухо и состоящий из колебаний с разной длиной волны, будет воздействовать на тысячи рецепторов внутреннего уха, каждый из которых настроен на высоту, слегка отличающуюся от настройки соседнего рецептора. Если звук состоит из многих волновых составляющих, информацию будет получать множество рецепторов, все выходные сигналы которых передаются в наш мозг. Богатство слуховой информации определяется способностью мозга анализировать такие комбинации звуков.

Совершенно иначе обстоит дело со зрением. Предметом обработки в зрительной системе служит изображение, схватываемое в каждый момент времени набором из миллионов рецепторов. Мы мгновенно воспринимаем сложную сцену. Если при этом мы захотели бы еще обрабатывать длины волн по принципам, используемым во внутреннем ухе, то сетчатка должна была бы иметь не только набор рецепторов, покрывающих всю ее поверхность, но и, скажем, по тысяче рецепторов в каждой отдельной точке, каждый из которых обладал бы максимальной чувствительностью к своей длине волны. Но втиснуть тысячу рецепторов в каждую точку сетчатки физически невозможно; поэтому здесь приходится идти на компромисс. Сетчатка содержит «цветовые» рецепторы трех типов с различной чувствительностью к длине волны в каждой из очень большого числа точек. Таким образом, ценой незначительного ущерба для разрешающей способности большая часть нашей сетчатки получает некоторую возможность обрабатывать информацию о длинах волн. Мы различаем семь цветов, а не 88 (впрочем, обе цифры следует многократно увеличить с учетом оттенков), но зато каждой из множества тысяч точек видимой сцены будет приписан определенный цвет. Сетчатка не могла бы обладать той способностью к пространственному анализу, которую она имеет, и одновременно обрабатывать информацию о длинах волн столь же изощренно, как слуховая система.

Теперь нужно дать читателю представление о том, что означает для нашего цветового зрения обладание тремя типами колбочек. Во-первых, может возникнуть вопрос: если данная колбочка при каких-то длинах волн работает лучше, чем при других, почему бы зрительной системе просто не измерить выход этой колбочки и не вычислить отсюда, каков здесь цвет? Почему бы тогда не иметь колбочки одного типа вместо трех? Да потому, что при одном типе колбочек, скажем красных, вы не смогли бы отличить свет с наиболее эффективной длиной волны в области 560 нм от более яркого света с менее эффективной