
- •1. Введение
- •2. Основные термины и определения
- •3. Роль регуляторных механизмов в поддержании клеточного гомеостаза
- •4. Типы регуляции
- •5. Практическое использование знаний об основах регуляции метаболизма у микроорганизмов
- •1. Способ регуляции метаболических процессов, основанный на избирательном синтезе ферментов
- •2. Регуляция репликации днк
- •3. Регуляция процесса транскрипции. Механизмы индукции и репрессии
- •4. Другие механизмы регуляции транскрипции у микроорганизмов
- •1. Избирательный синтез ферментов за счет регуляции процесса трансляции у микроорганизмов
- •2. Биосинтез и сборка компонентов аппарата трансляции
- •3. Регуляция функционирования аппарата трансляции
- •4. Способы регуляции биосинтеза и круговорота белков у микроорганизмов путем посттрансляционной модификации и избирательного протеолиза
- •1. Способ регуляции метаболических процессов у микроорганизмов, основанный на изменении активности ферментов
- •2. Простые и регуляторные ферменты
- •3. Аллостерические ферменты и эффекторы
- •4. Гомотропная и гетеротропная кооперативность
- •5. Обратимая ковалентная модификация
- •1. Специфические механизмы регуляции активности ферментов у микроорганизмов. Регуляция путей биосинтеза и промежуточного обмена
- •2. Роль энергетического заряда в регуляции клеточного метаболизма
- •3. Регуляторные эффекты Пастера и Крэбтри
- •4. Регуляция метаболической активности за счёт компартментализации ферментов и их взаимодействия с клеточными мембранами
- •1. Пассивная проницаемость и транспортные функции цитоплазматической мембраны бактерий
- •2. Энергетика транспортных процессов у микроорганизмов
- •3. Организация и регуляция транспортных процессов на уровне биосинтеза. Сборка и функционирование компонентов транспортных систем
- •1. Общая характеристика процесса клеточного деления
- •2. Накопление критической клеточной массы и репликация днк генома
- •3. Построение клеточной оболочки и перегородки
- •4. Взаимоотношение репликации днк и сборки клеточной перегородки
- •1. Скорость метаболизма в процессе клеточного деления
- •2. Выявление «узких мест» в метаболизме микробной клетки
- •3. Связь скорости роста микроорганизмов с биосинтезом стабильных форм рнк
- •4. Взаимосвязь регуляторных механизмов и их реализация в развивающихся микробных клетках
- •5. Регуляция межклеточных взаимодействий
- •1. Общая характеристика методологических подходов к решению научных проблем регуляции метаболизма микробных клеток
- •2. Классификация методов изучения регуляции метаболической активности
- •3. Методические особенности изучения скорости роста и активности транспортных систем у микроорганизмов
- •4. Методы изучения регуляции клеточного метаболизма с использованием мутантных микроорганизмов
- •Практика
- •Вводная часть
- •Основные термины и определения
- •1 Подготовка бактериальных клеток к анализу
- •1.1 Интактные клетки
- •1.1.1 Растущие клетки
- •1.1.2 Покоящиеся клетки
- •1.1.3 Голодающие покоящиеся клетки
- •1.2 Проницаемость клеток
- •1.2.1 Обработка растворителями
- •1.2.2 Обработка хелатообразующими агентами
- •1.3 Препараты дезинтегрированных клеток
- •1.3.1 Разрушение клеток под действием осмотических сил
- •1.3.2 Дезинтеграция
- •2 Изучение метаболической активности микроорганизмов. Общая характеристика условий эксперимента
1. Способ регуляции метаболических процессов у микроорганизмов, основанный на изменении активности ферментов
Путем синтеза новых ферментов или разбавления уже имеющихся (в результате роста) клетки могут лишь медленно адаптироваться к измененным условиям среды. Более быстрое приспособление клетки к резко меняющейся метаболической ситуации достигается путем изменения каталитической активности ферментов. Оба способа управления метаболизмом дополняют друг друга, и мутанты, дефектные по одному из указанных способов регуляции, как правило, вытесняются из популяции.
2. Простые и регуляторные ферменты
Скорость ферментативной реакции - количество субстрата (микромоль), превращаемое в единицу времени (1 мин) - зависит как от концентраций фермента (Е), субстрата (S) или продукта (P), так и от сродства фермента к субстрату (Km), а также от максимальной скорости реакции (max).
Km - это константа Михаэлиса-Ментен; она равна той концентрации субстрата, при которой активность фермента составляет половину максимальной (max/2).
Максимальная скорость реакции достигается при избытке субстрата, т. е. тогда, когда фермент насыщен субстратом. Кт и vmax - кинетические параметры фермента.
Простые ферменты
Для большинства ферментов характерна гиперболическая кривая насыщения субстратом. Скорость реакции зависит только от концентраций субстрата и продукта и гиперболически возрастает с повышением концентрации субстрата, т.е. удовлетворяет условиям соотношения Михаэлиса-Ментен. Такие ферменты называют простыми или «гиперболическими» ферментами.
При высокой концентрации субстрата фермент перерабатывает его быстрее, чем при более низкой концентрации. Скорость реакции фермента на изменение концентрации субстрата, зависит от крутизны кривой его насыщения субстратом. Чем круче кривая, тем больше повышается скорость реакции при незначительном сдвиге концентрации субстрата. Крутизна кривой и соответственно чувствительность больше всего при низких концентрациях субстрата. Скорость оборота веществ в клетке зависит от их концентрации. Как правило, субстраты ферментов (метаболиты) содержатся в клетке в концентрациях ниже Кт.
Регуляторные ферменты
Свойства регуляторных ферментов намного более сложные. Кривые насыщения субстратом для большинства этих ферментов отклоняются от гиперболической формы и часто становятся сигмоидными. У таких кривых имеется область значительно большей крутизны, чем у кривых насыщения для простых ферментов. В этой области, примерно между 1/2 и 1/4 Кт, регуляторные ферменты очень чувствительны - даже небольшого изменения концентрации субстрата достаточно, чтобы сильно изменить скорость реакции.
Сигмоидная
форма кривой указывает на то, что фермент
построен из субъединиц, между которыми
существуют кооперативные
взаимодействия. Связывание
субстрата с каталитическим
центром
одной из
субъединиц фермента повышает сродство
к субстрату других участков связывания
в той же молекуле. Регуляторные ферменты
состоят из двух или более, чаще всего
из четырех, субъединиц.