Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Консп_АПЗ_ПК_12_1.doc
Скачиваний:
30
Добавлен:
23.11.2019
Размер:
624.13 Кб
Скачать

4.1. Шинно-мостовая архитектура

В шинно-мостовой архитектуре имеется центральная магистральная шина, к которой остальные компоненты подключаются через мосты. В роли центральной магистрали сначала выступала шина (E)ISA, затем ее сменила шина PCI. Шинно-мостовая архитектура чипсетов просуществовала долгое время и пережила много поколений процессоров (от 2-го до 7-го). Перемещение вторичного кэша с системной платы на процессор (Р6 и Pentium 4 у Intel и К7 у AMD) несколько упростило северную часть чипсета – в ней не надо управлять статической кэш-памятью, а остается лишь обеспечивать когерентность процессорного кэша с основной памятью, доступ к которой возможен и со стороны шины PCI.

Видеокартам с ЗD-акселератором пропускной способности шины PCI, разделяемой между всеми устройствами, оказалось недостаточно. Тогда и появился порт AGP как выделенный мощный интерфейс между графическим акселератором и памятью (а также процессором). При этом задачи северного моста усложнились: контроллеру памяти приходится работать уже на три фронта – ему посылают запросы процессор(ы), мастера шины PCI (и ISA, но тоже через PCI) и порт AGP. Пропускная способность AGP в режиме 2х/4х/8х составляет 533/1066/2133 Мбайт/с, так что шина PCI по производительности стала уже второстепенной. Однако в шинно-мостовой архитектуре она сохраняет свою роль магистрали подключения всех периферийных устройств (кроме графических).

В качестве мощного представителя шинно-мостовой архитектуры можно рассматривать чипсет AMD-760 (рис.4.1). Здесь имеются первичная шина PCI на 64 бит и 66 МГц, являющаяся «экватором», и вторичная шина для подключения рядовой периферии.

Рис.4.1. Пример шинно-мостовой архитектуры PC

Шина, к которой подключается множество устройств, является узким местом по ряду причин. Во-первых, из-за большого числа устройств, подключенных (электрически) к шине, не удается поднять тактовую частоту до уровня, достижимого в двухточечных соединениях. Во-вторых, шина, к которой подключается множество разнотипных устройств (особенно расположенных на картах расширения), обременена грузом обратной совместимости со старыми периферийными устройствами. Например, предусмотренные возможности повышения производительности PCI используются не всегда: расширение разрядности до 64 бит обходится слишком дорого (большое число проводников порождает свои проблемы), а повышение частоты до 66 МГц для шины возможно лишь если все ее абоненты поддерживают эту частоту. Достаточно установить одну «простую» карту PCI, и производительность центральной шины падает до начальных 133 Мбайт/с. То же можно сказать и про PCI-X: достаточно подключить к ней одно устаревшее устройство PCI, и все протокольные усовершенствования будут отменены.

4.2. Хабовая архитектура

С введением высокоскоростных режимов UltraDMA (ATA/66, АТА/100, а затем и ATА/133) связь двухканального контроллера IDE с памятью через шину PCI стала уже слишком сильно нагружать эту шину. Кроме того, появились высокоскоростные интерфейсы Gigabit Ethernet, FireWire (100/200/400/800 Мбит/с) и USB 2.0 (480 Мбит/с). Ответом на эти изменения в расстановке сил стал переход на хабовую архитектуру чипсета. В данном контексте хабы – это специализированные микросхемы, обеспечивающие передачу данных между своими внешними интерфейсами. Этими интерфейсами являются «прикладные» интерфейсы подключения процессоров, модулей памяти, шин расширения и периферийные интерфейсы (ATA, SATA, USB, FireWire, Ethernet). Поскольку к одной микросхеме все эти интерфейсы не подключить (слишком сложна структура и много требуется выводов), чипсет строится, как правило, из пары основных хабов (северного и южного), связанных между собой высокопроизводительным каналом.

Рис.4.2. Пример хабовой архитектуры PC

Северный хаб чипсета выполняет те же функции, что и северный мост шин-но-мостовой архитектуры: он связывает шины процессора, памяти и порта AGP. Однако на южной стороне этого хаба находится уже не шина PCI, а высокопроизводительный интерфейс связи с южным хабом (рис.4.2). Пропускная способность этого интерфейса составляет 266 Мбайт/с и выше, в зависимости от чипсета. Если чипсет имеет интегрированную графику, то в северный хаб входит и графический контроллер со всеми своими интерфейсами (аналоговыми и цифровыми интерфейсами дисплея, шиной локальной памяти). Чипсеты с интегрированным графическим контроллером могут иметь внешний порт AGP, который становится доступным при отключении встроенного графического контроллера. Есть чипсеты, у которых порт AGP является чисто внутренним средством соединения встроенного контроллера, и внешний графический контроллер к ним может подключаться только по шине PCI.

С появлением PCI-E архитектура не слишком изменилась: северный хаб (мост) вместо порта AGP теперь предлагает высокопроизводительный (8х или 16х) порт, а то и пару портов PCI-E для подключения графического адаптера. Маломощные (1х) порты PCI-E могут предоставляться как северным, так и южным хабами (это решает разработчик чипсета). В последнем случае корневой комплекс PCI-E «расползается» по двум микросхемам чипсета, связанным между собой «фирменным» интерфейсом. Использования PCI-E как единой коммуникационной базы внутри чипсета пока не наблюдается.