
- •8. Молекулярно – кинетическая теория строения вещества
- •8.1. Молекулярно-кинетическая теория
- •8.2. Модель идеального газа. Основное уравнение состояния идеального газа
- •8.3. Основное уравнение кинетической теории газов
- •8.4. Молекулярно-кинетическая трактовка абсолютной температуры
- •8.5.Основные газовые законы молекулярно кинетической теории
- •8.5.1. Закон Бойля-Мариотта
- •8.5.2. Закон Гей-Люссака
- •8.5.3. Закон Шарля
- •8.5.4. Объединенный газовый закон Мариотта-Гей-Люссака
- •8.5.4. Закон Дальтона
- •9. Некоторые вопросы статистической физики
- •9.1. Распределение энергии по степеням свободы Число степеней свободы молекулы. Теорема Больцмана
- •9.2. Вероятность и флюктуации. Скорости теплового движения частиц
- •9.3. Распределение молекул (частиц) по скоростям.
- •Средняя длина свободного пробега молекул
- •9.4. Экспериментальное подтверждение молекулярно-кинетической теории газов (опыт Штерна)
- •9.5.Средняя длина свободного пробега молекул
- •9.6. Распределение Больцмана. Барометрическая формула
- •Внутренняя энергия. Первое начало термодинамики
- •9.8. Теплоёмкость газа. Уравнение Роберта Майера. Классическая теория теплоёмкостей
- •10. Элементы термодинамики
- •10.1. Первое начало термодинамики и его применение к изопроцессам в идеальных газах
- •10.1.1. Изохорный процесс
- •10.1.2. Изобарный процесс
- •10.1.3. Изотермический процесс
- •10.1.4. Адиабатический процесс
- •1 0.1.5. Работа и теплоёмкость при адиабатном процессе.
- •10.2. Основное уравнение термодинамики идеального газа. Энтропия.
- •10.3. Обратимые, необратимые и круговые процессы (циклы)
- •10.4. Цикл Карно. Максимальный кпд тепловой машины
- •10.5. Тепловая машина, работающая по циклическому принципу. Перпетум мобиле второго рода
- •10.6. Второе начало термодинамики
- •10.7. Третье начало термодинамики (теорема Нернста)
- •11. Реальные газы
- •11.1. Реальные газы. Молекулярные силы
- •11.2.Уравнение Ван-дер-Ваальса
- •11.3. Изотермы Ван-дер-Ваальса
- •12.2. Диффузия и теплопроводность. Коэффициенты диффузии и теплопроводности
- •13. Элементы механики сплошных сред
- •13.1. Строение жидкостей
- •13.2. Свойства жидкостей (вязкость, текучесть, сжимаемость и тепловое расширение)
- •13.3. Поверхностное натяжение. Энергия поверхностного слоя жидкости
- •13.4. Давление под искривлённой поверхностью жидкости. Формула Лапласа
- •13.5. Поверхностные явления на границе раздела двух жидкостей или жидкости и твердого тела
- •13.6. Капиллярные явления. Закон Жюрена
- •13.7. Жидкие кристаллы, их строение и свойства
- •13.8. Магнитные жидкости
- •1 3.8.1. Структура магнитных жидкостей
- •13.8.2. Получение магнитных жидкостей
- •13.8.3. Свойства магнитных жидкостей
- •13.8.4. Применение магнитных жидкостей
- •13.9. Кристаллическое состояние
- •13.9.1. Отличительные черты кристаллического состояния
- •13.9.2 Физические типы кристаллических решеток
12.2. Диффузия и теплопроводность. Коэффициенты диффузии и теплопроводности
Диффузия - процесс взаимного проникновения молекул (атомов) постороннего вещества, обусловленный их тепловым движением. Диффузия всегда сопровождается переносом массы вещества. Она характерна для газов, жидкостей и твердых тел. Самодиффузия - процесс взаимного проникновения собственных молекул (атомов), обусловленный их тепловым движением.
Согласно закону, экспериментально установленному Фиком, количество вещества dM, перенесенного через площадку dS, за время dt (первый закон Фика) равно
,
(1)
где dс/dz - скорость изменения (градиент) концентрации в направлении z;
"минус" - показывает, что масса переносится в направлении убывания концентрации данной компоненты.
D - коэффициент диффузии.
Коэффициент диффузии - физическая величина, числено равная массе переносимого вещества через единичную площадку в единицу времени при градиенте концентрации, равном единице;
.
(2)
Анализ соотношения (2) показывает:
1) так как при постоянной плотности газа T1/2, то и D T1/2;
2) при T = const 1/p, следовательно, и D 1/p.
Процесс переноса энергии между контактирующими телами или двумя поверхностями одного и того же тела, возникающий из-за разности температур называется теплопроводностью.
Одной из характеристик теплопроводности является тепловой поток. Тепловой поток - физическая величина, которая показывает, какое количество тепла, переносится в единицу времени через площадь dS при градиенте температуры dT/dz
.
Экспериментально Фурье установил закон теплопроводности, согласно которому количество тепла dQ, перенесенное через площадку dS за время dt, равно
,
где æ - коэффициент теплопроводности.
Коэффициент теплопроводности - физическая величина, которая показывает, какое количество тепла, переносится через единичную площадку, в единицу времени при градиенте температур равном единице; dT/dz - скорость изменения (градиент) температуры в направлении z.
или
.
(3)
Из формулы (3) видно, что коэффициент теплопроводности не зависит от давления. Между коэффициентами теплопроводности, диффузии и вязкости существует связь
;
= D;
.
Из выше рассмотренных положений, характерных для явлений переноса, видно, что все три коэффициента , æ, D зависят от . Определив какой-либо из коэффициентов можно вычислить , а зная - диаметр молекулы газа. Определенные таким методом значения диаметров молекул газа называют газокинетическими. Надо еще раз отметить, что механизмы всех рассмотренных кинетических явлений характерны для газов, жидкостей и твердых тел.
Полученные результаты рассмотренных явлений представлены в табл. 1.
Кинетические явления (явления переноса). Таблица.1
-
Явление
переноса
Переносимая
величина
Уравнение
процесса
Коэффициент
процесса
Внутреннее
трение (вязкость)
Количество
движения
(импульс)
Теплопроводность
Энергия
(теплота)
Диффузия
Масса
Лекция 13
(Строение жидкостей. Свойства жидкостей (вязкость, текучесть, сжимаемость и тепловое расширение). Поверхностное натяжение. Энергия поверхностного слоя жидкости. Давление под искривлённой поверхностью жидкости. Формула Лапласа. Поверхностные явления на границе раздела двух жидкостей или жидкости и твердого тела. Капиллярные явления.
Закон Жюрена.)